Skip to main content
Log in

Model studies on the heating of food proteins

Amino acid composition of lysozyme, ribonuclease and insulin after dry heating

Modelluntersuchungen über das erhitzen von lebensmittelproteinen

Aminosäurezusammensetzung von Lysozym, Ribonuclease und Insulin nach trockener Erhitzung

  • Original Works
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Zusammenfassung

Lysozym, Ribonuclease und Insulin wurden 1 bis 24 Std auf Temperaturen zwischen 80 und 180 °C trocken erhitzt. Die Aminosäureanalyse der erhitzten Proben ergab, daß die meisten Aminosäuren unterhalb 120 °C beständig sind. Darüber beginnt eine zunächst nahezu lineare Abnahme, die bei 160 °C einen kritischen Bereich erreicht. Apolar-aliphatische, saure und aromatische Aminosäuren sind insgesamt relativ beständig (Schädigungen im Mittel <20% nach 24 Std bei 180 °C). Bei den restlichen Aminosäuren steigt die Anfälligkeit in der Reihe Prolin, Arginin, Histidin, Cystein, Threonin, Lysin, Tryptophan, Serin und Methionin. Methionin wird bei maximaler Belastung zu 86% zerstört. Die Verluste an Trinitrobenzolsulfonsäure-reaktivem Lysin („verfügbarem Lysin”) betragen bei 100 °C 20%, während nach 24 Std bei 180 °C nahezu kein reaktives Lysin mehr vorhanden ist. Die Gewichtsverluste der erhitzten Proben betrugen maximal 11%, während die maximalen Proteinverluste zwischen 20 und 35% liegen. Für einige Aminosäureverluste wurden Reaktionsordnungen und Aktivierungsenergien bestimmt. Von den nachgewiesenen atypischen Aminosäuren („hot spots”) Lysinoalanin,allo-Isoleucin und Ornithin ist nur Lysinoalanin als Indikator für Aminosäureschädigungen nach trockener Erhitzung brauchbar.

Summary

Lysozyme, ribonuclease and insulin were exposed to dry heating for 1 to 24 h at temperatures between 80 and 180 °C. Amino acid analyses of the heated samples showed that most of the amino acids are stable up to 120 °C. Initially, at higher temperatures, an almost rectilinear decrease took place which reached a critical stage at 160 °C. Nonpolar aliphatic, acidic and aromatic amino acids were all relatively stable (maximum loss < 20% after 24 h at 180 °C). The lability of the other amino acids increased in the order proline, arginine, histidine, cysteine, threonine, lysine, tryptophan, serine, and methionine. Methionine was 86% decomposed after 24 h at 180 °C. Loss of trinitrobenzene sulfonic acid-reactive lysine (“available lysine”) reached 20% at 100 °C and essentially 100% after 24 h at 180 °C. Maximum loss in weight during heating was 11%, although maximum protein loss was between 20 and 35%. Reaction orders and activation energies were estimated for some of the amino acid losses. Of the atypical amino acids (“hot spots”) lysinoalanine,allo-isoleucine and ornithine that were detected, only lysinoalanine is useful as an indicator to detect amino acid damage after dry heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Feeney RE (1980) ACS Symp Ser 123 (Chem Deterior Proteins):

  2. Mauron J (1979) Z Ernährungswiss [Suppl] 23 (Energ Proteinbedarf Menschen):10

    Google Scholar 

  3. Bender AE (1978) The effect of heat on protein rich foods. In: Downey WK (ed) Food Qual Nutr (Proc COST Semin) 1977. Appl Sci, Barking, Engl p 411

    Google Scholar 

  4. Bender AE (1977) Biological changes — a consensus. In: Hoeyem T, Kvaale O (eds) Phys Chem Biol Changes Food Caused Therm Process (Proc Int Symp) 1976. Appl Sci, Barking, Engl p 360

    Google Scholar 

  5. Kinsella JE (1976) CRC Crit Rev Food Sci Nutr 7:219

    Google Scholar 

  6. Carpenter KJ (1973) What are the important factors affecting protein utilization. In: Porter JWG, Rolls BA (eds) Proteins Hum Nutr (Proc NATO Advan Study Inst) 1972. Acad Press, London p 531

    Google Scholar 

  7. Pristley RJ (ed) (1979) Effects of heating on foodstuffs. Appl Sci, Barking, Engl

    Google Scholar 

  8. Hoeyem T, Kvaael O (eds) (1977) Physical, chemical and biological changes in food caused by thermal processing (Proc Int Symp, Oslo 1976). Appl Sci, Barking, Engl

  9. Friedman M (ed) (1975) Protein nutritional quality of foods and feeds. Part 1 (Proc ACS Symp, 1974) Marcel Dekker, New York

    Google Scholar 

  10. Mauron J (1972) Influence of industrial and household handling on food protein quality. In: Bigwood EJ (ed) Protein and Amino Acid Functionality. Pergamon, Oxford p 417

    Google Scholar 

  11. Eriksson C (ed) (1981) Maillard reactions in food — chemical, physiological and technological aspects. Pergamon, Oxford

    Google Scholar 

  12. Tressl R, Grünewald KG, Helak B (1981) Formation of flavour components from proline and hydroxyproline with glucose and maltose and their importance to food flavour. In: Schreier P (ed) Flavour '81 (Proc 3rd Weurman Symp). W de Gruyter, Berlin p 397

    Google Scholar 

  13. Baltes W (1980) Lebensmittelchem Gerichtl Chem 34:39

    Google Scholar 

  14. Dworschak E (1980) CRC Crit Rev Food Sci Nutr 13:1

    Google Scholar 

  15. Reynolds TM (1965) Adv Food Res 14:167

    Google Scholar 

  16. Reynolds TM (1963) Adv Food Res 12:1

    Google Scholar 

  17. Heyns K, Paulsen H (1960) Wiss Veröffentl Dtsch Ges Ern 5:15

    Google Scholar 

  18. Ellis GP (1959) Adv Carbohydrate Chem 14:63

    Google Scholar 

  19. Hodge JE (1955) Adv Carbohydrate Chem 10:169

    Google Scholar 

  20. Hodge JE (1953) J Agric Food Chem 1:928

    Google Scholar 

  21. Weder JKP, Sohns S (1978) Z Lebensm Unters Forsch 167:93

    Google Scholar 

  22. Blackburn S (1968) Amino acid determination — methods and techniques. Marcel Dekker, New York p 22

    Google Scholar 

  23. Spies JR, Chambers DC (1948) Anal Chem 20:30

    Google Scholar 

  24. Kakade ML, Liener IE (1969) Anal Biochem 27:273

    Google Scholar 

  25. Weder JKP, Sohns S (1976) Mitteilungsbl GDCh Fachgr Lebensmittelchem 30:9

    Google Scholar 

  26. Schüssler H (1971) Z Naturforsch 26-11:901

    Google Scholar 

  27. Horak FP, Kessler HG (1981) Z Lebensm Unters Forsch 173:1

    Google Scholar 

  28. Meyer M, Klostermeyer H, Kleyn DH (1981) Z Lebensm Unters Forsch 172:446

    Google Scholar 

  29. Scharf U, Weder JKP (1983) in preparation

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank the Deutsche Forschungsgemeinschaft for supporting this work, Miss Marie-Luise Kern for her skillful technical assistance, and Mrs. Anneliese Mödl and Mrs. Angelika Langwieser for performing some of the amino acid analyses

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weder, J.K.P., Sohns, S. Model studies on the heating of food proteins. Z Lebensm Unters Forch 176, 421–425 (1983). https://doi.org/10.1007/BF01042554

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01042554

Keywords

Navigation