Skip to main content
Log in

Perpotassic granulites from southern Bohemia

A new rock-type derived from partial melting of crustal rocks under upper mantle conditions

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Garnetiferous, perpotassic granulites associated with voluminous, felsic calc-alkaline garnet-kyanite granulites in the Blanský les massif are described as a new rock type. A K2O content near 13 wt%, Zr content ranging from 17 to 5877 ppm, primary Ca-Mg-Fe garnet (pyrope up to 33 mol %), and the absence of primary plagioclase and quartz characterize the new type of granulite. Calcium is incorporated only in garnet and apatite. Owing to the content of garnet the bulk syenitic compositions are metaaluminous to peraluminous. The perpotassic granulites are accompanied by subordinated melanocratic perpotassic granulite and alkali-feldspar melanocratic granulite containing up to 20 vol % quartz. These rock types also contain highly variable amounts of zircon. High-pressure, noneutectic partial melting of crustal rocks and crystallization under upper mantle conditions is suggested as the main process in generation of perpotassic granulites. A polyphase, ductile to brittle deformation and recrystallization in pyroxene granulite and later in amphibolite facies accompanied obduction of the granulite massif which carries numerous enclaves of pyrope peridotite. Euhedral equant zircon crystals up to 4 mm long enclosed in large garnet crystals and in the alkali feldspar matrix of perpotassic granulite represent a uniform, high-temperature population with a nearly concordant U-Pb system (Aftalion et al. 1989). The Hercynian age of this zircon indicates the role of the Hercynian anatexis of crustal rocks under upper mantle conditions in generation of granulites in the Moldanubian zone of the Bohemian massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aftalion M, Bowes DR, Vrána S (1989) Early carboniferous U-Pb zircon age for garnetiferous, perpotassic granulites, Blanský les massif, Czechoslovakia. Neues Jahrb Mineral Monatsh 1989:145–152

    Google Scholar 

  • Anderson DE, Olimpio JC (1977) Progressive homogenization of metamorphic garnets, South Morar, Scotland; evidence of volume diffusion. Can Mineral 15:205–216

    Google Scholar 

  • Behr HJ (1961) Beiträge zur petrographischen und tektonischen Analyse des Sächsischen Granulitgebirges. Frieberg Forschungsh C 119:5–64

    Google Scholar 

  • Behr HJ (1978) Subfluenz-Prozesse im Grundgebirgs-Stockwerk Mitteleuropas. Z Dtsch Geol Ges 129:283–318

    Google Scholar 

  • Bouška V, Jelínek E, Pačesová M (1985) Geochemistry of the Moldanubian paragneisses. Charles University, Prague

    Google Scholar 

  • Dawson JB (1980) Kimberlites and their xenoliths. Springer, Berlin Heidelberg New York, p 252

    Google Scholar 

  • Dietrich RV (1968) Behaviour of zirconium in certain artificial magmas under diverse P-T conditions. Lithos 1:20–29

    Google Scholar 

  • El Bouseily AM, El Sokkary AA (1975) The relation between Rb, Ba, and Sr in granite rocks. Chem Geol 16:207–219

    Google Scholar 

  • Ellis DJ (1980) Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet — cordierite equilibria and the evolution of the deep crust. Contrib Mineral Petrol 74:201–210

    Google Scholar 

  • Fediuková E (1978) Mafic minerals from granulites of the borehole Holubov (South Bohemian Moldanubicum). Geol Sci, Ser Econom Geol-Miner Prague 19:169–198

    Google Scholar 

  • Fediuková E, Suk M (1979) An example of migmatite origin by dehydrating metamorphism. Bull Geol Soc Finland 51:1–9

    Google Scholar 

  • Fiala J, Lang M, Obrda J, Pivec E, Ulrych J (1982) Petrology of some garnet-kyanite-K-feldspar leptynites on the Czech Moldanubicum, Czechoslovakia. Rozpr Cesk Akad Ved Mat Mat Nat Sci Ser 97:102

    Google Scholar 

  • Fiala J, Vaňková V (1985) Radioactivity and geochemistry of granulites and some related rocks from the Saxonian granulite complex. Studia Geoph Geod 29:374–394

    Google Scholar 

  • Fiala J, Matějovská O, Vaňková V (1987) Moldanubian granulites and related rocks: petrology, geochemistry and radioactivity. Rozpr Cesk Akad Ved Mat Nat Sci Ser 97:102

    Google Scholar 

  • Fišera M, Čeloudová J, Domácí L, Holásek O, Klečák J, Krásný J, Líbalová J, Machart J, Manová M, Odehnal L, Střída M, Šalanský K (1982) Explanation to geological map of ČSSR 1:25000, Písek. Ústřední Ústav Geol (in Czech)

  • Floor P (1974) Alkaline gneisses. In: Sørensen H (ed) The alkaline rocks. Wiley, London, pp 124–142

    Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Green TH (1977) Garnet in silicic liquids and its possible use as P-T indicator. Contrib Mineral Petrol 65:59–67

    Google Scholar 

  • Green TH, Ringwood AE (1972) Crystallization of garnet-bearing rhyodacite under high pressure hydrous conditions. J Geol Soc Austr 19:203–212

    Google Scholar 

  • Grew ES (1982) Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite facies. Am Mineral 67:762–787

    Google Scholar 

  • Grew ES (1986) Petrogenesis of kornerupine at Waldheim, Sachsen, German Democratic Republic. Z Geol Wiss 14:525–558

    Google Scholar 

  • Grew ES (1988) A second occurrence of kornerupine in Waldheim, Saxony, German Democratic Republic. Z Geol Wiss 14:525–558

    Google Scholar 

  • Griffin WL, Jensen BB, Misra SN (1971) Anomalously elongated rutile in eclogite-facies pyroxene and garnet. Nork Geol Tidskr 51:177–185

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminium silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Huang WL, Wyllie PJ (1975) Melting reactions in the system NaAl-Si3O8-KAlSi3O8-SiO2 to 35 kilobars, dry and with excess water. J Geol 83:737–748

    Google Scholar 

  • Huang WL, Wyllie PJ (1981) Phase relationship of S-type granite with H2O to 35 kb: Muscovite granite from Harney Peak, South Dakota. J Geophys Res 86:1015–1029

    Google Scholar 

  • Huang WL, Wyllie PJ (1986) Phase relationship of gabbro-tonalite-granite-water at 15 kb with applications to differentiation and anatexis. Am Mineral 71:301–316

    Google Scholar 

  • Kodym O (1972) Multiphase deformation in the Blanský les granulite massif (southern Bohemia). Krystalinikum 9:91–105

    Google Scholar 

  • Kodym O, Jakeš P, Schovánek P (1978) Granulite and ultramafische Gesteine aus der Strukturbohrung Holubov. J Geol Sci Geol Ser 32:7–47

    Google Scholar 

  • Larsen L (1973) Measurement of solubility of zircon (ZrSiO4) in synthetic granitic melts. EOS 54:479

    Google Scholar 

  • Leyreloup A (1973) Le socle profond en Velay d'après les enclaves remontees par les volcans néogènes. Son thermométamorphisme et sa lithologie: granités et série charnockitique Massif Central français. Thèse docteur 3e cycle, Nantes

  • Machart J (1984) Ultramafic rocks in the Bohemian part of the Moldanubicum and Central Bohemian islet zone (Bohemian Massif). Krystalinikum 17:13–32

    Google Scholar 

  • Nicholls J, Carmichael JSE (1969) Peralkaline acid liquids: a petrological study. Contrib Mineral Petrol 20:268–294

    Google Scholar 

  • Novák M, Povondra P (1984) Wagnerite from Skřinářov, central Czechoslovakia. Neues Jahrb Mineral Monatsh 1984:536–542

    Google Scholar 

  • Parsons I (1978) Feldspars and fluids in cooling plutons. Mineral Mag 42:1–17

    Google Scholar 

  • Petrakakis K (1986) Metamorphism of high-grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets. J Metamorph Geol 4:323–344

    Google Scholar 

  • Pike JEN, Schwarzman EC (1977) Classification of textures in ultramafic xenoliths. J Geology 85:49–61

    Google Scholar 

  • Pin Ch, Vielzeuf D (1988) Les granulites de haute-pression d'Europe moyenne témoins d'une subduction néo-hercynienne. Implications sur l'origine des groupes leptyno-amphibolique. Bull Soc Geol Fr 8 (IV):13–20

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Google Scholar 

  • Rajlich P, Synek J, Šerbach M, Schulmann K (1986) Hercynianthrust related shear zones and deformation of the varied Group on the contact of granulites (Southern Moldanubian, Bohemian Massif). Geol Rundschau 75:665–683

    Google Scholar 

  • Sahama TG (1974) Potassium-rich alkaline rocks. In: Sørensen H (ed) The alkaline rocks. Wiley, London, pp 96–109

    Google Scholar 

  • Scharbert HG (1971) Cyanit and Sillimanit in moldanubischen Granuliten. Tschermaks Mineral Petrol Mitt 16:252–267

    Google Scholar 

  • Schreyer W (1985) Metamorphism of crustal rocks at mantle depth: High-pressure minerals and mineral assemblages in metapelites. Fortschr Mineral 63:227–261

    Google Scholar 

  • Schreyer W, Abraham K, Behr HJ (1975) Sapphirine and associated minerals from the kornerupine rock of Waldheim, Saxony. Neues Jahrb Mineral Abh 126:1–27

    Google Scholar 

  • Schreyer W, Massonne HJ, Chopin C (1987) Continental crust subducted to depth near 100 km: Implications for magma and fluid genesis in collision zones. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochem Soc, Spec Publ 1:155-163

  • Stern ChR, Wyllie PJ (1981) Phase relationship of I-type granite with H2O to 35 kilobars: the Dinkey lakes biotite granite from the Sierra Nevada batholith. J Geophys Res 86:10412–10422

    Google Scholar 

  • Streckeisen A (1973) Classification and nomenclature of plutonic rocks. Geotimes 18:26–30

    Google Scholar 

  • Strejček M (1986) Petrology of granulites in the Plešovice quarry near Český Krumlov. Diploma Thesis, Charles University, Prague (in Czech)

    Google Scholar 

  • Tracy RJ (1982) Compositional zoning and inclusions in metamorphic minerals. Mineral Soc Am, Rev Mineral 10:355–397

    Google Scholar 

  • Tracy RJ, Robinson P, Thompson AB (1976) Garnet composition and zoning in determination of temperature and pressure of metamorphism, Central Massachusetts. Am Mineral 61:762–775

    Google Scholar 

  • van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána S (1982) Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinburgh Earth Sci 73:89–108

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276

    Google Scholar 

  • Vrána S (1979) Polyphase shear folding and thrusting in the Moldanubicum of southern Bohemia. Bull Geol Surv Prague 54:75–86

    Google Scholar 

  • Vrána S (1987) Garnet-fassaitic pyroxene skarn from the granulite complex of southern Bohemia. Bull Geol Surv Prague 62:193–206

    Google Scholar 

  • Vrána S, Jakeš P (1982) Orthopyroxene and two-pyroxene granulites from a segment of charnockitic crust in southern Bohemia. Bull Geol Surv Prague 57:129–143

    Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results in applications to trace element geochemistry. Contrib Mineral Petrol 70:407–419

    Google Scholar 

  • Mielke P, Winkler HGF (1979) Eine bessere Berechnung der Mesonorm für granitische Gesteine. Neues Jahrb Monatsh Mineral 1979:471–480

    Google Scholar 

  • Wyllie PJ (1979) Magmas and volatile components. Am Mineral 64:469–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrána, S. Perpotassic granulites from southern Bohemia. Contr. Mineral. and Petrol. 103, 510–522 (1989). https://doi.org/10.1007/BF01041756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041756

Keywords

Navigation