Skip to main content
Log in

Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. I. computational approach

  • Published:
Journal of the International Association for Mathematical Geology Aims and scope Submit manuscript

Abstract

Equations representing conservation of mass and charge, partial and local equilibrium constraints, and effective surface area as a function of reaction progress can be combined with a numerical integration computer routine and the rate equations proposed by Aagaard and Helgeson (1977, 1982)to predict quantitatively the consequences of irreversible reactions among minerals and aqueous solutions as a function of time and surface area in geochemical processes. Including provision for changing relative rates for several minerals reacting simultaneously with an aqueous solution affords a more realistic description of interphase mass transfer than has been achieved in the past. Computer experiments indicate that reactions among minerals and acid aqueous solutions in geochemical processes take place over relatively short periods of time and that the rate of change is controlled by the pH of the aqueous phase, either directly through formation of activated complexes on the surfaces of the reactant minerals, or indirectly through the dependence on pH of the chemical affinities of the overall reactions. As solution pH increases, the chemical affinities of the hydrolysis reactions decrease dramatically. As a consequence, early incongruent reaction products form much more rapidly than those produced or destroyed in later stages of reaction progress, where reaction rates become proportional to the chemical affinities of the overall hydrolysis reactions. Under these conditions, quasistatic states may persist for long periods of geologic time and result in spatial differences in fluid composition corresponding to different degrees of progress toward overall equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, P. and Helgeson, H. C., 1977, Thermodynamic and kinetic constraints on the dissolution of feldspar (abs.): Geol. Soc. Amer. Abs. Prog., v. 9, p. 873.

    Google Scholar 

  • Aagaard, P. and Helgeson, H. C., Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. 1. Theoretical considerations: Amer. Jour. Sci., v. 282, p. 237–285.

  • Ball, J. W., Jenne, E. A., and Nordstrom, D. K., 1979, WATEQ2-A computerized chemical model for trace and major element speciation and mineral equilibria of natural waters,in Jenne, E. A. (Ed.), Chemical modeling in aqueous systems: American Chemical Society, Symposium Series 79.

  • Berner, R. A., 1978, Rate control of mineral dissolution under Earth surface conditions: Amer. Jour. Sci., v. 278, p. 1235–1252.

    Google Scholar 

  • Berner, R. A., 1980, Dissolution of pyroxenes and amphiboles during weathering: Science, v. 207, p. 1205–1206.

    Google Scholar 

  • Berner, R. A., 1981, Kinetics of weathering and diagenesis,in Lasaga, A. C. and Kirkpatrick, R. J. (Eds.), Kinetics of geochemical processes: Rev. Min., v. 8, p. 111–134.

    Google Scholar 

  • Berner, R. A. and Holdren, G. R., Jr., 1977, Mechanism of feldspar weathering: Some observational evidence: Geology, v. 5, p. 369–372.

    Google Scholar 

  • Berner, R. A. and Holdren, G. R., Jr., 1979, Mechanism of feldspar weathering. II. Observations of feldspars from soils: Geochim. Cosmochim. Acta, v. 43, p. 1173–1186.

    Google Scholar 

  • Brady, J. B., 1977, Metasomatic zones in metamorphic rocks: Geochim. Cosmochim. Acta., v. 41, p. 113–126.

    Google Scholar 

  • Brimhall, G. H., 1979, Lithologic determination of mass transfer mechanisms of multiplestage porphyry copper mineralization at Butte, Montana: Vein formation by hypogene leaching and enrichment of potassium-silicate protore: Econ. Geol., v. 74, p. 556–589.

    Google Scholar 

  • Brimhall, G. H., 1980, Deep hypogene oxidation of prophyry copper postassium silicate protore at Butte, Montana: A theoretical evaluation of copper remobilization hypothesis: Econ. Geol., v. 75, p. 384–409.

    Google Scholar 

  • Busenberg, E. and Clemency, C. V., 1976, The dissolution kinetics of feldspars at 25°C and 1 atm CO2 partial pressure: Geochim. Cosmochim. Acta, v. 40, p. 41–49.

    Google Scholar 

  • Crerar, D. A., 1975, A method for computing multicomponent chemical equilibria based on equilibrium constants: Geochim. Cosmochim. Acta, v. 39, p. 1375–1384.

    Google Scholar 

  • Dibble, W. E., Jr. and Tiller, W. A., 1981, Non-equilibrium water/rock interactions. I. Model for interface-controlled reactions: Geochim. Cosmochim. Acta, v. 45, p. 79–92.

    Google Scholar 

  • Fouillac, C., Michard, G., and Bocquier, G., 1977, Une méthode de simulation de l'évolution des profils d'altération: Geochim. Cosmochim. Acta, v. 41, p. 207–213.

    Google Scholar 

  • Fritz, B. and Tardy, Y., 1976, Séquence des minéraux secondaires dans l'altération des granites et roches basiques; modèles thermodynamiques: Bull. Soc. Geol. France, v. 7, p. 7–12.

    Google Scholar 

  • Fritz, B. and Tardy, Y., 1976b, Predictions of mineralogical sequences in tropical soils by a theoretical dissolution model,in J. Cadek and T. Paces (Eds.), Proceedings of the International Symposium on Water-Rock Interaction: Geol. Survey, Prague, p. 409–416.

    Google Scholar 

  • Fung, P., Bird, G. W., McIntyre, N. S., Sanipelli, G. G., and Lopata, V. J., 1980, Aspects of feldspar dissolution: Nuclear Tech., v. 51, p. 188–196.

    Google Scholar 

  • Grandstaff, D. E., 1977, Some kinetics of bronzite orthopyroxene dissolution: Geochim. Cosmochim. Acta, v. 41, p. 1097–1103.

    Google Scholar 

  • Grandstaff, D. E., 1978, Changes in surface area and morphology and the mechanism of forsterite dissolution: Geochim. Cosmochim. Acta, v. 42, p. 1899–1901.

    Google Scholar 

  • Helgeson, H. C., 1970, A chemical and thermodynamic model of ore deposition in hydrothermal systems,in B. A. Morgan (Ed.), Fiftieth anniversary symposia: Min. Soc. Amer. Special Paper, v. 3, p. 155–186.

    Google Scholar 

  • Helgeson, H. C., 1971, Kinetics of mass transfer among silicates and aqueous solutions: Geochim. Cosmochim. Acta, v. 35, p. 421–469.

    Google Scholar 

  • Helgeson, H. C., 1972, Kinetics of mass transfer among silicones and aqueous solutions: Correction and clarification: Geochim. Cosmochim. Acta, v. 36, p. 1067–1070.

    Google Scholar 

  • Helgeson, H. C., 1979, Mass transfer among minerals and hydrothermal solutions,in Barnes, H. L. (Ed.), Geochemistry of hydrothermal ore deposits: John Wiley & Sons, New York, p. 568–610.

    Google Scholar 

  • Helgeson, H. C., 1980, Reaction rates and mass transfer in geochemical processes (abs); 26th International Geological Congress, July 7–17, Paris, France, Abstracts, v. 1, p. 49.

    Google Scholar 

  • Helgeson, H. C. and Aagaard, P., 1979, A retroactive clock for geochemical processes (abs.): Geol. Soc. Amer. Abs. Prog., v. 11, p. 422.

    Google Scholar 

  • Helgeson, H. C., Brown, T. H., Nigrini, A., and Jones, T. A., 1970, Calculation of mass transfer in geochemical processes involving aqueous solutions: Geochim. Cosmochim. Acta, v. 34, p. 569–592.

    Google Scholar 

  • Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K., 1978, Summary and critique of the thermodynamic properties of rock forming minerals: Amer. Jour. Sci., v. 278A.

  • Helgeson, H. C., Kirkham, D. H., and Flowers, G. C., 1981, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb: Amer. Jour. Sci., v. 281, p. 1249–1516.

    Google Scholar 

  • Helgeson, H. C., Murphy, W. M., and Aagaard, P., 1983, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim. Cosmochim. Acta (submitted for publication).

  • Hofmann, A., 1972, Chromatographic theory of infiltration metasomatism and its application to feldspars: Amer. Jour. Sci., v. 272, p. 69–90.

    Google Scholar 

  • Holdren, G. R., Jr. and Berner, R. A., 1979, Mechanism of feldspar weathering. 1. Experimental studies: Geochim. Cosmochim. Acta, v. 43, p. 1161–1171.

    Google Scholar 

  • Jöesten, R., 1977, Evolution of mineral assemblage zoning in diffusion metasomatism: Geochim. Cosmochim. Acta, v. 41, p. 649–670.

    Google Scholar 

  • Karpov, I. K., Kaz'min, L. A., Kashik, S. A., 1973, Optimal programming for computer calculation of irreversible evolution in geochemical systems: Geokhimiya, p. 603–611 (Geochem. Int., 1974, p. 464–470).

  • Korzhinskii, D. S., 1970, Theory of metasomatic zoning: Oxford Univ. Press, London.

    Google Scholar 

  • Lagache, M., 1965, Contribution à l'étude de l'altération des feldspaths, dans l'eau, entre 100 et 200°C, sous diverses pressions de CO2, et application à la synthese des minéraux argileux: Bull. Soc. franç. Minér. Crist., v. 88, p. 223–253.

    Google Scholar 

  • Lagache, M., 1976, New data on the kinetics of the dissolution of alkali feldspars at 200°C in CO2 charged water: Geochim. Cosmochim. Acta, v. 40, p. 157–161.

    Google Scholar 

  • Massard, P., 1977, Approche thermodynamique des phénomènes de dissolution. Aspect cinétique en système ouvert: Bull. Soc. Fr. Minéral. Cristallogr., v. 100, p. 177–184.

    Google Scholar 

  • Massard, P., 1981, Approche thermodynamique de phénomènes de dissolution. Aspect cinétique en système fermé dans le cas de l'albite: Bull. Minéral., v. 104, p. 23–35.

    Google Scholar 

  • Merino, E., 1975, Diagenesis in Tertiary sandstones from Kettleman North Dome, California. II. Interstitial solutions: Distribution of aqueous species at 100°C and chemical relation to the diagenetic mineralogy: Geochim. Cosmochim. Acta, v. 39, 1629–1645.

    Google Scholar 

  • Morel, F. and Morgan, J. J., 1972, A numerical method for computing equilibria in aqueous chemical systems: Env. Sci. Tech., v. 6, p. 58–67.

    Google Scholar 

  • Murphy, W. M. and Helgeson, H. C., 1983a, Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. II. Retrieval and prediction of rate constants, activation energies, and the stoichiometry of activated complexes (in preparation).

  • Murphy, W. M. and Helgeson, H. C., 1983b, Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. III. Application to weathering, basalt/sea water interaction, and hydrothermal ore deposition (in preparation).

  • Nordstrom, D. K., Plummer, L. N., Wigley, T. M. L., Wolery, T. J., Ball, J. W., Jenne, E. A., Bassett, R. L., Crerar, D. A., Florence, T. M., Fritz, B., Hoffman, M., Holdren, G. R., Jr., Laton, G. M., Mattigod, S. V., McDuff, R. E., Morel, F., Reddy, M. M., Sposito, G., and Thrailkill, J., 1979, A comparison of computerized chemical models for equilibrium calculations in aqueous systems:in Jenne, E. A. (Ed.), Chemical modeling in aqueous systems: American Chemical Society, Symposium Series 79, p. 857–892.

    Google Scholar 

  • Petrovič, R., Berner, R. A., and Goldhaber, M. B., 1976, Rate control in dissolution of alkali feldspar. I. Studies of residual feldspar grains by X-ray photoelectron spectroscopy: Geochim. Cosmochim. Acta, v. 40, p. 537–548.

    Google Scholar 

  • Rimstidt, J. D. and Barnes, H. L., 1980, The kinetics of silica-water reactions: Geochim. Cosmochim. Acta, v. 44, p. 1683–1699.

    Google Scholar 

  • Seyfried, W. E., Jr. and Bischoff, J. L., 1981, Experimental seawater-basalt interaction at 300°C and 500 bars: chemical exchange, secondary mineral formation and implications for the transport of heavy metals: Geochim. Cosmochim. Acta, v. 45, 135–147.

    Google Scholar 

  • Schott, J., Berner, R. A., and Sjöberg, E. L., 1981, Mechanism of pyroxene and amphibole weathering. I. Experimental studies of iron-free minerals: Geochim. Cosmochim. Acta, v. 45, p. 2123–2135.

    Google Scholar 

  • Temkin, M. I., 1963, The kinetics of stationary reactions: Dokl. Akad. Nauk. S.S.S.R., v. 152, p. 782–785.

    Google Scholar 

  • Tsuzuki, Y. and Suzuki, K., 1980, Experimental study of the alteration process of labradorite in acid hydrothermal solutions: Geochim. Cosmochim. Acta, v. 44, p. 673–683.

    Google Scholar 

  • Van Zeggeren, F. and Storey, S. H., 1970, The computation of chemical equilibria: Cambridge University Press, London.

    Google Scholar 

  • Weare, J. H., Stephens, J. R., and Eugster, H. P., 1976, Diffusion metasomatism and mineral reaction zones: General principles and application to feldspar alteration: Amer. Jour. Sci., v. 276, p. 767–816.

    Google Scholar 

  • Wollast, R., 1976, Kinetics of the alteration of K-feldspar in buffered solutions at low temperature: Geochim. Cosmoshim. Acta, v. 31, p. 635–648.

    Google Scholar 

  • Wolery, T. J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges—a theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals, Ph.D. Dissertation: Northwestern University.

  • Wolery, T. J., 1979, Calculation of chemical equilibrium between aqueous solution and minerals: the EQ#3/6 software package: Lawrence Livermore Laboratory Pub. URCL-52658.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helgeson, H.C., Murphy, W.M. Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. I. computational approach. Mathematical Geology 15, 109–130 (1983). https://doi.org/10.1007/BF01030078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030078

Key words

Navigation