Skip to main content
Log in

Summary

A method is presented to infer cloud liquid water path (LWP in kg/m2) over the ocean from passive microwave measurements of SSM/I. The algorithm to retrieve LWP is based on simulated satellite observations. They are calculated with a radiative transfer model applied to about 3000 radiosonde ascents over the Atlantic Ocean. Since radiosonde observations do not contain direct information about cloud water and ice, these parameters are parameterized based on relative humidity and temperature using modified adiabatic liquid water density profiles. A multiple linear regression is applied to the simulated radiances and the calculated LWP to derive the algorithm. The retrieval accuracy based on the regression analysis including instrumental noise is 0.03 kg/m2. Validation of the LWP-algorithm was pursued through a comparison with measurements of a ground-based 33 GHzmicrowave radiometer on board of R.V. “Poseidon” during the International Cirrus Experiment 1989 at the North Sea (ICE'89). The LWP values agree within the range of uncertainty caused by the different sampling characteristics of the observing systems. The retrieval accuracy for clear-sky cases determined using colocated METEOSAT data over the North Sea is 0.037 kg/m2 and confirms the accuracy estimated from regression analysis for the low liquid water cases.

The algorithm was used to derive maps of monthly mean LWP over the Atlantic Ocean. As an example the Octobers of the 5 years 1987–1991 were selected to demonstrate the interannual variability of LWP. The results were compared with the cloud water content produced by the climate model ECHAM-T2 from the Max-Planck-Institut Hamburg.

Observations during ICE'89 were used to check the accuracy of the applied radiative transfer model. Brightness temperatures were calculated from radiosonde ascents launched during the overpass of DMSP-F8 in cloud-free situations. The channel-dependent differences range from about −2 to 3 K.

The possibility to identify different cloud types using microwave and infrared observations was examined. The main conclusion is that simultaneous microwave and infrared measurements enable the separation of dense cirrus and cirrus with underlying water clouds. A classification of clouds with respect to their top heights and LWP was carried out using a combination of SSM/I derived LWP and simultaneously recorded Meteosat IR-data during ICE'89.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alishouse, J. C., Snider, J. B., Westwater, E. R., Swift, C. T., Ruf, C. S., Snyder, S. A., Vongsathorn, J., Ferraro, R. R., 1990: Determination of cloud liquid water content using SSM/I,IEEE Trans. Geosci. Remote Sensing,28, 817–822.

    Google Scholar 

  • Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models.Science,245, 513–516.

    Google Scholar 

  • Chang, A. T. C., Milman, A. S., 1982: Retrieval of ocean surface and atmospheric parameters from multichannel microwave radiometer measurements.IEEE Trans. Geosci. Remote Sensing,GE-20, 217–224.

    Google Scholar 

  • Chang, A. T. C., Wilheit, T. T., 1979: Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite.Radio Science,14, 793–802.

    Google Scholar 

  • Curry, J. A., Liu, G., 1992: Assessment of aircraft icing potential using satellite data.J. Appl. Meteor.,31, 605–621.

    Google Scholar 

  • Curry, J. A., Ardeel, C. D., Tian, L., 1990: Liquid water content and precipitation characteristics of stratiform clouds as inferred from satellite microwave measurements.J. Geophys. Res.,95/D10, 16659–16671.

    Google Scholar 

  • Deirmendjian, D., 1969:Electromagnetic Scattering on Spherical Polydispersions. New York: American Elsevier, 290 p.

    Google Scholar 

  • Deirmendjian, D., 1975: Far-infrared and submillimeter wave attenuation by clouds and rain.J. Appl. Meteor.,14, 1584–1593.

    Google Scholar 

  • Grody, N. C., 1976: Remote sensing of atmospheric water content from satellite using microwave radiometry.IEEE Trans. Ant. Prop.,AP-24, 155–162.

    Google Scholar 

  • Grody, N. C., Gruber, A., Shen, W. C., 1980: Atmospheric water content over the tropical pacific derived from the Nimbus-6 Scanning Microwave Radiometer.J. Appl. Meteor.,19, 986–996.

    Google Scholar 

  • Hill, G. E., 1991: Measurement of atmospheric liquid water by a ground-based single-frequency microwave radiometer.J. Atmos. Oceanic Technol.,8, 685–690.

    Google Scholar 

  • Hogg, D. C., Guiraud, F. O., Snider, J. B., Decker, M. T., Westwater, E. R., 1983: A steerable dual-channel microwave radiometer for measurements of water vapor and liquid in the troposphere.J. Climate Appl. Meteor.,22, 789–806.

    Google Scholar 

  • Hollinger, J. P., 1971: Passive microwave measurements of sea surface roughness.IEEE Trans. Geosi. Electron.,GE-9, 165 ff.

    Google Scholar 

  • Hollinger, J. P., Lo, R., Poe, D., Savage, R., Peirce, J., 1987:Special Sensor Microwave/Imager User's Guide. Washington D.C.: Naval Research Laboratory.

    Google Scholar 

  • Jackson, J. D., 1962:Classical Electrodynamics. New York: Wiley.

    Google Scholar 

  • Kriebel, K. T., Saunders, R. W., Gesell, G., 1989: Optical properties of clouds derived from fully cloudy AVHRR pixels.Beitr. Phys. Atmosph.,62, 165–171.

    Google Scholar 

  • Liebe, H. J., Layton, D. H., 1987: Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modelling. NTIA Report 87-224, U.S. Dept. of Commerce, National Telecommunications and Information Administration, Institute for Communication Sciences, 325 Broadway, Boulder, CO 80303-3328, 80 p.

    Google Scholar 

  • Liou, K.-N., 1986: Influence of cirrus cloud on weather and climate processes: a global perspective.Mon. Wea Rev.,114, 1167–1199.

    Google Scholar 

  • Liu, G., Curry, J. A., 1993: Determination of characteristic features of cloud liquid water from satellite microwave measurements.J. Geophys. Res.,98, 5069–5092.

    Google Scholar 

  • Lojou, J. Y., Frouin, R., Bernard, R., 1991: Comparison of Nimbus-7 SMMR and GOES-1 VISSR atmospheric liquid water content.J. Appl. Meteor.,30, 187–198.

    Google Scholar 

  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen.Annalen der Physik,25, 377–445.

    Google Scholar 

  • Njoku, E. G., Swanson, L., 1983: Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite radiometry.Mon. Wea. Rev.,111, 1977–1987.

    Google Scholar 

  • Oelke, C., 1992: Mikrowellenfernerkundung des Wolkenwassergehaltes über dem Atlantik mit Satellitendaten. Diplomarbeit am Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, 90 p.

  • Pandey, P. C., Njoku, E. G., Waters, J. W., 1983: Inference of cloud temperature and thickness by microwave radiometry from space.J. Climate Appl. Meteor.,22, 1894–1898.

    Google Scholar 

  • Petty, G. W., Katsaros, K. B., 1990: New geophysical algorithms for the Special Sensor Microwave/Imager. Fifth Conference on Satellite Meteorology and Oceanography, London, American Meteorological Society, 247–251.

  • Prabhakara, C., Wang, I., Chang, A. T. C., Gloersen, P. 1983: A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed.J. Climate Appl. Meteor.,22, 2023–2037.

    Google Scholar 

  • Roeckner, E., Dümenil, L. Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., 1989: The Hamburg version of the ECMWF model (ECHAM), In: Beer, C. J. (ed.)Research Activities in Atmospheric and Ocean Modelling CAS/JSC Working Group on Numerical Experimemation,13, 7.1–7.4.

  • Roeckner, E., Rieland, M., Kemp, E., 1991: Modelling of clouds and radiation in the ECHAM model. In.: ECMWF/WCRP workshop on clouds, radiative transfer and the hydrological cycle, 199–222.

  • Rosenkranz, P. W., Staelin, D. H., Grody, N. C., 1978: Typhoon June (1975) viewed by a scanning microwave spectrometer.J. Geophys. Res.,83/C4, 1857–1868.

    Google Scholar 

  • Schiffer, R.A., Rossow, W. B., 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Program.Bull. Amer. Meteor. Soc.,64, 779–784.

    Google Scholar 

  • Simmer, C., 1992: Satellitenfernerkundung hydrologischer Parameter der Atmosphäre mit Mikrowellen. Habilitationsschrift an der Mathemetisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universitat zu Kiel, 314 p.

  • Staelin, D. H., Künzi, K. F., Pettyjohn, R. L., Poon, R. K. L., Wilcox, R. W., Waters, J. W., 1976: Remote sensing of atmospheric water vapour and liquid water with the Nimbus-5 microwave spectrometer.J. Appl. Meteor.,15, 1204–1214.

    Google Scholar 

  • Stogryn, A., 1972: The emissivity of sea foam at microwave frequencies.J. Geophys. Res.,77, 1658–1666.

    Google Scholar 

  • Sundquist, H., 1978. A parametrization scheme for nonconvective condensation including prediction of cloud water content.Quart. J. Roy. Meteor. Soc.,104, 677–690.

    Google Scholar 

  • Takeda, J., Liu, G., 1987: Estimation of atmospheric liquid-water amount by Nimbus-7 SMMR data: A new method and its application to the western North-Pacific region,J. Meteor. Soc. Japan,65, 931–946.

    Google Scholar 

  • Takeda, T., Natsuki, S., 1982. Estimation of liquid water amount in an extended cloud by Nimbus-5 microwave data.J. Meteor. Soc. Japan,60, 1153–1164.

    Google Scholar 

  • Tsang, L., Kong, J. A., Shin, R. T. 1985: Theory of microwave remote sensing. New York: Wiley, 613 p.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., Fung, A. K., 1981: Microwave remote sensing, active and passive, vol. I: Fundamentals and radiometry Norwood, MA: Artechhouse, 456 p.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., Fung, A. K., 1986: Microwave remote sensing, active and passive, vol. III: From theory to application. Norwood, MA: Artechhouse, 1065–2162.

    Google Scholar 

  • Warner, J., 1955: The water content of cumuliform clouds.Tellus,7, 449–457.

    Google Scholar 

  • Weinman, J. A., Guetter, P. J., 1977: Determination of rainfall distributions from microwave radiation measured by the Nimbus 6 ESMR.J. Appl. Meteor.,16, 437–442.

    Google Scholar 

  • Westwater, E. R., 1978: The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry.Radio Science,13, 947–957.

    Google Scholar 

  • Wilheit, T. T., Chang, A. T. C., 1980: An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the Scanning Multichannel Microwave Radiometer.Radio Science,15, 525–544.

    Google Scholar 

  • Yeh, H. Y., 1984: Comments on “Inference of cloud temperature and thickness by microwave radiometry from space”.J. Climate Appl. Meteor.,23, 15793

    Google Scholar 

  • Yeh, H. Y., Liou, K. N., 1983: Remote sounding of cloud parameters from a combination of infrared and microwave channels.J. Climate Appl. Meteor.,22, 201–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karstens, U., Simmer, C. & Ruprecht, E. Remote sensing of cloud liquid water. Meteorl. Atmos. Phys. 54, 157–171 (1994). https://doi.org/10.1007/BF01030057

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030057

Keywords

Navigation