Skip to main content
Log in

Self-dual Yang-Mills fields ind=4 and integrable systems in 1≤d≤3

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Ward correspondence between self-dual Yang-Mills fields and holomorphic vector bundles is used to develop a method for reducing the Lax pair for the self-duality equations of the Yang-Mills model ind=4 with respect to the action of continuous symmetry groups. It is well known that reductions of the self-duality equations lead to systems of nonlinear differential equations in dimension 1≤d≤3. For the integration of the reduced equations, it is necessary to find a Lax pair whose compatibility conditions is these equations. The method makes it possible to obtain systematically a Lax representation for the reduced self-duality equations. This is illustrated by a large number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. F. Atiyah,Classical Geometry of Yang-Mills Fields, Scuola Normale Superiore, Pisa (1979); R. S. Ward and R. O. Wells, Jr.,Twistor Geometry and Field Theory, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  2. M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991).

    Google Scholar 

  3. R. S. Ward,Philos. Trans. R. Soc. London Ser. A,315, 451 (1985);Lecture Notes in Physics,280, 106 (1987); R. S. Ward, in:Twistors in Mathematics and Physics, T. N. Bailey and R. J. Baston, eds., London Mathematical Society Lecture Note Series 156, Cambridge University Press, Cambridge (1990), p. 246.

    Google Scholar 

  4. L. J. Mason and G. A. J. Sparling,Phys. Lett. A,137, 29 (1989);J. Geom. and Phys.,8, 243 (1992).

    Google Scholar 

  5. I. Bakas and D. A. Depireux,Mod. Phys. Lett. A,6, 399, 1561 (1991).

    Google Scholar 

  6. M. J. Ablowitz, S. Chakravarty, and P. A. Clarkson,Phys. Rev. Lett.,65, 1085 (1990); S. Chakravarty and M. J. Ablowitz, in:Painlevé Transcendents, their Asymptotics and Physical Applications, D. Levi and P. Winternitz, eds., NATO ASI Series B, Vol. 278, Plenum Press, New York (1992), p. 331.

    Google Scholar 

  7. S. Chakravarty, S. Kent, and E. T. Newman,J. Math. Phys.,31, 2253 (1990);33, 382 (1992); I. A. B. Strachan,Phys. Lett. A,154, 123 (1991); T. A. Ivanova and A. D. Popov,Lett. Math. Phys.,23, 29 (1991).

    Google Scholar 

  8. T. A. Ivanova and A. D. Popov,Phys. Lett. A,170, 293 (1992).

    Google Scholar 

  9. N. M. J. Woodhouse,Class. Quant. Grav.,4, 799 (1987); N. M. J. Woodhouse and L. J. Mason,Nonlinearity,1, 73 (1988); J. Fletcher and N. M. J. Woodhouse, in:Twistors in Mathematics and Physics, T. N. Bailey and R. J. Baston, eds., London Mathematical Society Lecture Note Series 156, Cambridge University Press, Cambridge (1990), p. 260.

    Google Scholar 

  10. L. J. Mason and N. M. J. Woodhouse,Nonlinearity,6, 569 (1993).

    Google Scholar 

  11. J. Tafel,J. Math. Phys.,34, 1892 (1993).

    Google Scholar 

  12. M. Kovalyov, M. Legaré, and L. Gagnon,J. Math. Phys.,34, 3245 (1993).

    Google Scholar 

  13. R. S. Ward,Nucl. Phys. B,236, 381 (1984); M. J. Ablowitz, D. J. Costa, and K. Tenenblat,SIAM,77, 37 (1987); A. D. Popov, JINR Rapid Commun., Vol. 6 (1992), p. 57; I. A. B. Strachan,J. Math. Phys.,34, 243 (1993).

    Google Scholar 

  14. Y. Nakamura,J. Math. Phys.,29, 244 (1988);32, 382 (1991); K. Takasaki,Commun. Math. Phys.,127, 225 (1990); J. Schiff, Preprint IASSNS-HEP-93/34 (1992); I. A. B. Strachan,J. Math. Phys.,33, 2477 (1992); M. J. Ablowitz, S. Chakravarty, and L. A. Takhtajan,Commun. Math. Phys.,158, 289 (1993).

    Google Scholar 

  15. A. A. Belavin and V. E. Zakharov,Phys. Lett. B,73, 53 (1978); R. S. Ward,Phys. Lett. A,61, 81 (1977).

    Google Scholar 

  16. M. Legare and A. D. Popov,Pis'ma Zh. Eksp. Teor. Fiz.,59, 845 (1994).

    Google Scholar 

  17. T. A. Ivanova and A. D. Popov,Pis'ma Zh. Eksp. Teor. Fiz.,61, 142 (1995).

    Google Scholar 

  18. S. V. Manakov and V. E. Zakharov,Lett. Math. Phys.,5, 247 (1981).

    Google Scholar 

  19. R. S. Ward,J. Math. Phys.,29, 386 (1988);Nonlinearity,1, 671 (1988);Commun. Math. Phys.,128, 319 (1990).

    Google Scholar 

  20. H. Ooguri and C. Vafa,Nucl. Phys. B,367, 83 (1991); H. Nishino and S. J. Gates, Jr.,Mod. Phys. Lett. A,7, 2543 (1992); S. V. Ketov, H. Nishino, and S. J. Gates, Jr.,Phys. Lett. B,307, 331 (1993);Nucl. Phys. B,393, 149 (1993).

    Google Scholar 

  21. S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. 1, Interscience Publ. (1963); Vol. 2, Wiley, New York (1969).

  22. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,Modern Geometry: Methods and Applications [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  23. A. Lichnerowicz,Geometrie des Groupes de Transformations, Dunod, Paris (1958); S. Kobayashi,Transformation Groups in Differential Geometry, Springer-Verlag, Berlin (1972).

    Google Scholar 

  24. P. Griffiths and J. Harris,Principles of Algebraic Geometry, Wiley, New York (1978).

    Google Scholar 

  25. M. F. Atiyah, N. J. Hitchin, and I. M. Singer,Proc. R. Soc. London, Ser. A,362, 425 (1978); N. M. J. Woodhouse,Class Quantum Grav.,2, 257 (1985).

    Google Scholar 

  26. A. G. Sergeev, “Twistor theory and classical gauge fields: A review,” in:Monopoles: Topological and Variational Methods [Russian translations], Mir, Moscow (1989), p. 492.

    Google Scholar 

  27. L. V. Ovsyannikov,Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978); P. J. Olver,Applications of Lie Groups to Differential Equations, Springer-Verlag, New York (1986).

    Google Scholar 

  28. P. Forgács and N. S. Manton,Commun. Math. Phys.,72, 15 (1980); J. Harnad, S. Shnider, and L. Vinet,J. Math. Phys.,21, 2719 (1980); R. Jackiw and N. S. Manton,Ann. Phys. (N.Y.),127, 257 (1980).

    Google Scholar 

  29. P. Winternitz, in:Partially Integrable Evolution Equations in Physics, R. Conte and N. Boccara, eds., NATO ASI Series C, Vol. 310, Kluwer Academic Publ. (1990), p. 515.

  30. A. C. Newell,Solitons in Mathematics, Society for Industrial and Applied Mathematics in the United States (1985).

  31. V. A. Belinskii and V. E. Zakharov,Zh. Eksp. Teor. Fiz.,75, 1953 (1978).

    Google Scholar 

  32. S. P. Burtsev, V. E. Zakharov, and A. V. Mikhailov,Teor. Mat. Fiz.,70, 323 (1987).

    Google Scholar 

  33. F. Calogero and A. Degasperis,Commun. Math. Phys.,63, 155 (1978).

    Google Scholar 

  34. D. Maison,Phys. Rev. Lett.,41, 521 (1978);J. Math. Phys.,20, 871 (1979); Preprint MPI-PAE/PTh-3/82 (1982).

    Google Scholar 

  35. A. V. Mikhailov and A. I. Yaremchuk,Nucl. Phys. B,202, 508 (1982).

    Google Scholar 

  36. R. Leese,J. Math. Phys.,30, 2072 (1989); A. D. Popov,Yad. Fiz.,55, 3371 (1992).

    Google Scholar 

  37. M. A. Semenov-Tyan-Shanskii and L. D. Faddeev,Vestn. Leningr. Univ., No. 13, 81 (1977).

    Google Scholar 

  38. L. A. Takhtadzhyan and L. D. Faddeev,The Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  39. A. Fordy and P. P. Kulish,Commun. Math. Phys.,89, 427 (1983); A. Fordy, S. Wojciechowski, and I. Marshall,Phys. Lett. A,113, 395 (1986).

    Google Scholar 

  40. M. Wadati and T. Kamijo,Prog. Theor. Phys.,52, 397 (1974).

    Google Scholar 

  41. F. Calogero and A. Degasperis,Nuovo Cimento B,39, 1 (1977).

    Google Scholar 

  42. C. Athorne and A. P. Fordy,J. Phys. A,20, 1377 (1987).

    Google Scholar 

  43. P. Winternitz, in:Painlevé Transcendents, their Asymptotics and Physical Applications, D. Levi and P. Winternitz, eds., NATO ASI Series B, Vol. 278, Plenum Press, New York (1992), p. 425.

    Google Scholar 

  44. N. Bourbaki,Éléments de Mathématique, Vol. 34,Groupes et Algèbres de Lie, Hermann, Paris (1968).

    Google Scholar 

  45. A. N. Leznov and M. V. Savel'ev,Group Methods of Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  46. O. I. Bogoyavlenskii,Izv. Akad. Nauk SSSR, Ser. Mat.,52, 243 (1988);Usp. Mat. Nauk,46, 3 (1991).

    Google Scholar 

  47. A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky,Commun. Math. Phys.,122, 321 (1989).

    Google Scholar 

  48. V. V. Trofimov and A. T. Fomenko,Usp. Mat. Nauk,39, 3 (1984); “Geometry of Poisson brackets and Liouville methods of integrating systems on symmetry spaces,” in:Modern Problems of Mathematics. Recent Achievements. Vol. 26 [in Russian], VINITI, Moscow (1986), p. 3.

    Google Scholar 

Download references

Authors

Additional information

N. N. Bogolyubov Theoretical Physics Laboratory, JINR, 141980 Dubna, Russia. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 102, No. 3, pp. 384–419, March, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, T.A., Popov, A.D. Self-dual Yang-Mills fields ind=4 and integrable systems in 1≤d≤3. Theor Math Phys 102, 280–304 (1995). https://doi.org/10.1007/BF01017880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017880

Keywords

Navigation