Skip to main content
Log in

Electrochemistry of anodic F2 evolution at carbon electrodes: Bubble adherence effects in the kinetics at rotating cone electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Fluorine-evolving carbon anodes exhibit unusually high overvoltages characterized also by remarkably large Tafel slopes having values 0.4–0.8 V per decade of current density change. Also, at high current densities, a so-called ‘anode effect’ associated with a type of passivation sets in. Experiments are described which aim to distinguish high polarization arising from an intrinsically large Tafel slope, generated by a non-ohmic charge transfer barrier layer effect due to ‘CF’ film formation, from effects due to difficulties of F2 bubble detechment and F2 gas film formation at the ‘CF’ film. Steady state polarization measurements have been made at a rotating carbon cone electrode from which F2 bubbles, which otherwise remain attached to the electrode and block access to the electrolyte, can be spun away. At the rotated electrode, at low and intermediate current densities, linear Tafel behaviour is still observed but with high slopes associated with the barrier layer film effect. At higher current densities an ‘anode effect’, associated with the F2 gas film, is developed, leading to a type of passivation of the electrode. The two sources of unusually high polarization in the F2 evolution reaction at carbon are not independent as it is also the formation of the ‘CF’ film that causes difficulties in gas bubble detachment owing to the lyophobic properties of the fluorinated C/F2/KF·2HF interface. Polishing effects confirm this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chemla, D. Devilliers and F. Lantelm, Proceedings of the First International Symposium on Molten Salt Chemistry and Technology, Kyoto, Japan, April, 1983; see also D. Devilliers, F. Lantelm and M. Chemla,J. Chim. Phys. 80 (1983) 267.

  2. H. Imoto, T. Nakajima and N. Watanabe,Bull. Chem. Soc. Jap. 48 (1975) 1633; see also P. Cadman, J. D. Scott and J. M. Thomas,Surface Sci. 15 (1977) 75.

    Google Scholar 

  3. A. J. Rudge, in ‘Industrial Electrochemical Processes’ (edited by A. T. Kuhn), Elsevier, Amsterdam (1971) Chap. 1.

    Google Scholar 

  4. N. Watanabe, M. Ishii and S. Yoshizawa,J. Electrochem. Soc. Jap. 29 (1961) E180; see also N. Watanabe, ‘Proc. Electrochem. Soc., Electrochemistry of Carbon’ (1984) p. 536.

    Google Scholar 

  5. A. J. Arvia and J. B. de Cusminsky,Trans. Faraday Soc. 58 (1962) 1019.

    Google Scholar 

  6. N. Watanabe, M. Inoue and S. Yoshizawa,J. Electrochem. Soc. Jap. 31 (1963) 168.

    Google Scholar 

  7. D. M. Novak and P. T. Hough,J. Electroanal. Chem. 144 (1983) 121.

    Google Scholar 

  8. L. Bai and B. E. Conway, in course of publication (1988).

  9. J. O'M. Bockris, ‘Modern Aspects of Electrochemistry’ (edited by J. O'M. Bockris), Butterworths, London (1954) Vol. 1, Chap. 4.

    Google Scholar 

  10. R. E. Meyer,J. Electrochem. Soc. 107 (1960) 847.

    Google Scholar 

  11. U.S. Patent No. 4602985 to Eldorado Resources Ltd (1986).

  12. N. Watanabe,J. Fluorine Chem. 22 (1983) 205.

    Google Scholar 

  13. M. Chemla, D. Devilliers and F. Lantelme, Ann. Chim. France (1984) 633.

  14. D. Devilliers, F. Lantelme and M. Chemla,Electrochim. Acta 31 (1986) 1235.

    Google Scholar 

  15. O. R. Brown, B. M. Ikeda and M. J. Wilmott,Electrochim. Acta 32 (1987) 1163.

    Google Scholar 

  16. L. Bai and B. E. Conway, Part II of this series, in course of publication; presented at the Conference “Centenary of the Discovery of Fluorine”, Paris, August, 1986.

  17. J. S. Clarke and A. T. Kuhn,J. Electroanal. Chem. 85 (1977) 299.

    Google Scholar 

  18. B. E. Conway and L. Bai,J. Electroanal. Chem. 198 (1986) 149.

    Google Scholar 

  19. E. Kirowa-Eisner and E. Gileadi,J. Electrochem. Soc. 123 (1976) 22.

    Google Scholar 

  20. N. Watanabe, S. Matsui and M. Haruta,Denki Kaguku 43 (1975) 638.

    Google Scholar 

  21. B. Burrows and R. Jasinski,J. Electrochem. Soc. 115 (1968) 348.

    Google Scholar 

  22. H. K. Fredenhagen and O. T. Kreft,Z. Elektrochem. 35 (1929) 670.

    Google Scholar 

  23. C. S. Garner and D. M. Yost,J. Am. Chem. Soc. 59 (1937) 2738.

    Google Scholar 

  24. J. Kuta and E. Yeager, ‘Techniques of Electrochemistry’ (edited by E. Yeager and A. J. Salkind), John Wiley, New York (1972) Vol. 1, p. 141.

    Google Scholar 

  25. M. Sluyters-Rehbach and J. H. Sluyters, in ‘Comprehensive Treatise of Electrochemistry’ (edited by E. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangaspani), Plenum, New York (1984) Vol. 9, Chap. 4.

    Google Scholar 

  26. T. Nakajima, T. Ogawa and N. Watanabe,J. Electrochem. Soc. 134 (1987) 8.

    Google Scholar 

  27. Quarterly Report to Eldorado Resources Ltd from Electrochemistry Laboratory, University of Ottawa, March 1987.

  28. D. Devilliers, M. Vogler, F. Lantelme and M. Chemla,Analyt. Chim. Acta 153 (1983) 69.

    Google Scholar 

  29. J. S. Hammond and N. Winograd, in ‘Comprehensive Treatise of Electrochemistry’ (edited by R. E. White, J. O'M. Bockris, B. E. Conway and E. Yeager), Plenum, New York (1984) Vol. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Conway, B.E. Electrochemistry of anodic F2 evolution at carbon electrodes: Bubble adherence effects in the kinetics at rotating cone electrodes. J Appl Electrochem 18, 839–848 (1988). https://doi.org/10.1007/BF01016039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016039

Keywords

Navigation