Skip to main content
Log in

Reaction-diffusion equations for interacting particle systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study interacting spin (particle) systems on a lattice under the combined influence of spin flip (Glauber) and simple exchange (Kawasaki) dynamics. We prove that when the particle-conserving exchanges (stirrings) occur on a fast time scale of order ɛ−2 the macroscopic density, defined on spatial scale ɛ−1, evolves according to an autonomous nonlinear diffusion-reaction equation. Microscopic fluctuations about the deterministic macroscopic evolution are found explicitly. They grow, with time, to become infinite when the deterministic solution is unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Arnold and M. Theodosopulu, Deterministic limit of the stochastic model of chemical reactions with diffusion,Adv. Appl. Prob. 12:367 (1980).

    Google Scholar 

  2. D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, inPartial Differential Equation and Related Topics, Lecture Notes in Mathematics (Springer, Berlin, 1975), p. 446.

    Google Scholar 

  3. R. Balescu,Equilibrium and Nonequilibrium statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  4. H. van Beijeren, O. E. Lanford, J. L. Lebowitz, and H. Spohn, Equilibrium time correlation functions in the low density limit,J. Stat. Phys. 22:237 (1980).

    Google Scholar 

  5. E. Ben Jacob, H. Brand, G. Dee, L. Kramer, and J. S. Langer, Pattern propagation in nonlinear dissipative systems,Physica 14d:348 (1985).

    Google Scholar 

  6. C. Boldrighini, R. L. Dobrushin, and Yu. M. Sukhov, One-dimensional hard-core caricature of hydrodynamics,J. Stat. Phys. 31:577 (1983).

    Google Scholar 

  7. N. N. Bogoliubov, Problems of a dynamical theory in statistical physics, inStudies in Statistical Mechanics (1962).

  8. M. D. Bramson, Maximal displacement of branching Brownian motion,Commun. Pure Appl. Math. 31:531–581 (1978).

    Google Scholar 

  9. T. H. Brox and H. Rost, Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities,Ann. Prob. 12:744 (1984).

    Google Scholar 

  10. P. Cannon, The one-dimensional heat equation, inEncyclopedia of Mathematics, G. C. Rota, ed. (Addison-Wiley, Reading, Massachusetts, 1984).

    Google Scholar 

  11. C. Cercignani,Theory and Applications of the Boltzmann Equation (Elsevier, New York, 1975).

    Google Scholar 

  12. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  13. D. Dawson, Critical dynamics and fluctuations for a mean field model of cooperative behavior,J. Stat. Phys. 31:1 (1983).

    Google Scholar 

  14. A. De Masi, P. Ferrari, and J. L. Lebowitz, Rigorous derivation of reaction diffusion equations with fluctuations,Phys. Rev. Lett. 55:1947 (1985).

    Google Scholar 

  15. A. De Masi, N. Ianiro, and E. Presutti, Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior. I,J. Stat. Phys. 29:57 (1982).

    Google Scholar 

  16. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many-particle systems, inStudies in Statistical Mechanics, Vol. 2, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1984).

    Google Scholar 

  17. A. De Masi, E. Presutti, H. Spohn, D. Wick and W. Wick, Asymptotic equivalence of fluctuation fields for reversible exclusion processes with speed change,Ann. Prob. 14:409 (1986).

    Google Scholar 

  18. A. De Masi, E. Presutti, and M. E. Vares, Escape from the unstable equilibrium in a random process with infinitely many interacting particles,J. Stat. Phys. 44:645 (1986).

    Google Scholar 

  19. A. Einstein,Investigations on the Theory of Brownian Movement (Matheus and Co. London, 1926).

    Google Scholar 

  20. P. A. Ferrari, E. Presutti, and M. E. Vares, Local equilibrium for a one-dimensional zerorange process, Preprint (1986); P. A. Ferrari, E. Presutti, and M. E. Vares, Nonequilibrium fluctuations for a zero-range process, Preprint (1986).

  21. P. A. Ferrari, E. Presutti, E. Scacciatelli, and M. E. Vares, Probability estimates for symmetric simple exclusion process, Preprint (1986).

  22. P. A. Ferrari, S. Goldstein, and J. L. Lebowitz, Diffusion mobility and Einstein relation, inStatistical Physics and Dynamical Systems, Progress in Physics, Vol. 10, J. Fritz, A. Jaffee, and D. Sasz, eds. (Birkhauser, Boston, Basel, Stuttgart, 1985).

    Google Scholar 

  23. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (W. A. Benjamin, New York, 1975).

    Google Scholar 

  24. J. Fritz, The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system, Preprint (1986).

  25. H. Haken,Synergetics, 2nd edn. (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  26. T. H. Harris,The Theory of Branching Processes (Springer-Verlag, Berlin, 1963).

    Google Scholar 

  27. R. Holley, Rapid convergence to equilibrium in one-dimensional stochastic Ising model,Ann. Prob. 13:72 (1985).

    Google Scholar 

  28. R. Holley and D. W. Stroock, Generalized Ornstein-Uhlenbeck processes and infinitebranching Brownian motions,Kyoto Univ. Res. Inst. Math. Sci. Publ. A14:741 (1978); R. Holley and D. W. Stroock, Central limit phenomena for various interacting systems,Ann. Math. 110:333 (1979); R. Holley and D.W. Stroock, Rescaling short-range interacting stochastic processes in higher dimensions,Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields (Esztergom, Hungary, 1979).

    Google Scholar 

  29. L. Kadanoff,J. Stat. Phys. 34:497 (1985).

    Google Scholar 

  30. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  31. S. Katz, J. L. Lebowitz, and H. Spohn, Nonequilibrium steady state of stochastic lattice models of fast ionic conductors,J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  32. C. Kipnis, J. L. Lebowitz, E. Presutti, and H. Spohn, Self-diffusion for particles with stochastic collisions in one dimension,J. Stat. Phys. 30:107 (1983).

    Google Scholar 

  33. P. Kotelenez, Law of large numbers and central limit theorem for linear chemical reaction with diffusion,Ann. Prob. 14:173 (1986).

    Google Scholar 

  34. T. Kurtz, Solution of ordinary differential equations as limits of pure jump Markov Processes,J. Appl. Prob. 7:49 (1970); T. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary diffusion processes,J. Appl. Prob. 8:344 (1971); T. Kurtz, Strong approximation theorems for density-dependent Markov chains,Stoch. Processes Appl. 6:223 (1978).

    Google Scholar 

  35. O. Lanford, inDynamical Systems; Theory and Applications, J. Moser, ed., Lecture Notes in Physics, Vol. 38 (Springer-Verlag, Berlin, 1975), p. 1; O. Lanford, The hard sphere gas in the Boltzmann-Grad limit,Proceedings of the XIVth International Conference on Thermodynamics and Statistical Mechanics, J. Stephenson, ed. (University of Alberta, Canada, 1980).

    Google Scholar 

  36. J. L. Lebowitz and H. Spohn, Microscopic basis for Fick's law for self-diffusion,J. Stat. Phys. 29:39 (1982); J. L. Lebowitz and H. Spohn, Steady-state self-diffusion at low density,J. Stat. Phys. 29:39 (1982).

    Google Scholar 

  37. T. M. Liggett,Interacting Particle Systems, Vol. 296 (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  38. M. Metivier, Convergence faible et principe d invariance pour des martingales a valeurs dans des espace de Sobolev,20:239Ann. Inst. Henri Poincaré (1984); M. Metivier, Unecondition suffisant de compacite faible pour une suite de processus. Cas des semimartingales, École Politechnique Paris Preprint (1985); M. Metivier, Sufficient condition for thightness and weak convergence of a sequence of processes, University of Minnesota Preprint (1985).

    Google Scholar 

  39. I. Mitoma, Tightness of probabilities onC([0, 1],C([0, 1],L andD([0, 1]E,Ann. Prob. 11:989 (1983).

    Google Scholar 

  40. C. B. Morrey, On the derivation of the equation of hydrodynamics from Statistical Mechanics,Commun. Pure Appl. Math. 8:279 (1955).

    Google Scholar 

  41. G. Nicolis and I. Prigogine,Self-organization in Nonequilibrium systems (Wiley, New York, 1977).

    Google Scholar 

  42. L. Patterson,Phys. Rev. Lett. 52:2281 (1985).

    Google Scholar 

  43. G. Papanicolau, inStatistical and Dynamical Systems, J. Fritz A. Jaffee, and D. Sasz, eds. (Birkhauser, Boston, Basel, Stuttgart, 1985).

    Google Scholar 

  44. U. Petrov,Sum of independent Random Variables (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  45. I. Prigogine,Nonequilibrium Statistical Physics (Wiley-intersciences, New York, 1962).

    Google Scholar 

  46. E. Presutti, Collective phenomena in stochastic particle systems. Proceedings BIBOS Conference, Bielefeld (1985).

  47. L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas 1980).

    Google Scholar 

  48. H. Rost,Hydrodynamic gekoppelter diffusionen fluktuationen im gleichgewicht, Lecture Notes in Mathematics (Springer, Berlin, 1983), p. 1031.

    Google Scholar 

  49. D. L. Snyder,Random Point Processes (Wiley-intersciences, New York, 1975).

    Google Scholar 

  50. J. Smoller,Shock Waves and Reaction-Diffusion Equations (Springer-Verlag, Berlin, 1983), p. 258.

    Google Scholar 

  51. H. Spohn, Kinetic equations for Hamiltonian systems: Markovian limits,Rev. Mod. Phys. 53:569 (1980); H. Spohn, Equilibrium fluctuations for some stochastic particle systems, inStatistical Physics and Dynamical systems, J. Fritz, A. Jaffee, and D. Sasz, eds. (Birkhauser, Boston, Basel, Stuttgart, 1985); H. Spohn, Hydrodynamic limit for systems with many particles, Proceedings of the International Conference on Mathematical Problems in the Physics of Fluids, Rome, June (1985).

    Google Scholar 

  52. H. Spohn, Equilibrium fluctuations for interacting Brownian particles,Commun. Math. Phys. 103:1–33 (1986).

    Google Scholar 

  53. A. G. Shuhov and Y. M. Sukhov, inStatistical Physics and Dynamical systems, Progress in Physics, Vol. 10, J. Fritz, A. Jaffee, and D. Sasz, eds., (Birkhauser, Boston, Basel, Stuttgart, 1985).

    Google Scholar 

  54. D. W. Stroock and S. R. S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, Berlin, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by NSF Grant DMR81-14726-02.

Partially supported by CNR.

Partially supported by CNPq Grant No. 201682-83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Masi, A., Ferrari, P.A. & Lebowitz, J.L. Reaction-diffusion equations for interacting particle systems. J Stat Phys 44, 589–644 (1986). https://doi.org/10.1007/BF01011311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011311

Key words

Navigation