Skip to main content
Log in

Far infrared absorption by pairs of nonpolar molecules

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Recent progress in the field of binary collision induced spectra of nonpolar gases and mixtures in the far infrared (FIR) region of the spectrum includes accurate measurements of a variety of molecular systems and temperatures, and rigorous quantum calculations. The latter are based on the isotropic potential approximation and either on ab initio induced dipole data obtained with highly correlated wavefunctions, or on the classical multipole induction model. The contributions of both free pairs of molecules in collisional interaction, and bound pairs (van der Waals molecules), are accounted for in equilibrium proportions. The effects of the anisotropy of the intermolecular interaction potential on the spectra are also being understood in quantitative terms. On an absolute intensity scale, the agreement of theory with the laboratory measurements is typically well within the uncertainties of the measurements if all theoretical dimer features are flattened by convolution with with an instrumental profile of 10 or 20 cm−1 width; certain dimer features have been seen in the FIR spectra of the atmospheres of the outer planets and their big moons. For astrophysical and other applications, the results of the quantum computations have been cast into simple analytical expressions which reproduce collision induced spectra accurately as function of frequency and temperature on computers of small capacity in seconds for a selection of molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Welsh.Pressure induced absorption spectra of hydrogen, pages 33–71.MTP Int. Rev. of Science-Physical Chemistry, Butterworths. London, 1972. Series one, volume III: Spectroscopy.

  2. R. Coulon and G. Bachet, Review on collision-induced absorption in gases.Int. J. Infrared and Millimeter Waves. 4:979–992, 1983.

    Google Scholar 

  3. J. van Kranendonk, editor.Intermolecular Spectroscopy and Dynamical Properties of Dense Systems—Proceedings of the Int. School of Physics “Enrico Fermi”. Course LXXV. North-Holland Publ. Company, Amsterdam. 1980.

    Google Scholar 

  4. J. D. Poll. Collision induced phenomena: Absorption, light scattering, and static properties.Canadian J. Phys., 59:1399–1562, 1981. Papers presented at the Internat. Conference on Collision Induced Phenomena held at Florence/Italy, Sept. 2–5, 1980.

    Google Scholar 

  5. G. Birnbaum, editor.Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  6. N. H. Rich and A. R. W. McKellar, A bibliography on collision induced absorption.Canad. J. Phys. 54:486, 1976.

    Google Scholar 

  7. J. L. Hunt and J. D. Poll. A second bibliography on collision induced absorption.Canad. J. Phys., 59:163–164, 1986. Publication 1/86, Department of Physics, University of Guelph.

    Google Scholar 

  8. R. W. Hartye, C. G. Gray, J. D. Poll, and M. S. Miller, Moment analysis and quantum effects in collision-induced absorption.Mol. Phys. 29:825–836, 1975.

    Google Scholar 

  9. J. L. Hunt and J. D. Poll. Lineshape analysis of collision-induced spectra of gases.Can. J. Phys., 56:950–961, 1978.

    Google Scholar 

  10. G. Birnbaum. Determination of molecular constants from collision-induced far-infra-red spectra and related methods.Int. Spect. Dyn. Prop. Dense Systems, LXXV:111–145, 1980.

    Google Scholar 

  11. G. Birnbaum and E. R. Cohen. Determination of molecular multipole moments and potential function parameters of non-polar molecules from far infrared spectra.Mol. Phys., 32:161–167, 1976.

    Google Scholar 

  12. G. Birnbaum, M. S. Brown, and L. Frommhold. Lineshapes and dipole moments in collision-induced absorption.Can. J. Phys., 59:1544–1554, 1981.

    Google Scholar 

  13. J. D. Poll and J. L. Hunt. Analysis of the far infrared spectrum of gaseous N2.Canadian J. Phys., 59:1448–1458, 1981.

    Google Scholar 

  14. R. P. Futrelle. Collision-induced absorption as a probe of rare-gas interatomic potentials.Phys. Rev. Lett., 19:479, 1967.

    Google Scholar 

  15. A. Borysow and L. Frommhold. Theoretical collision induced rototranslational absorption spectra for the outer planets: H2−CH4 pairs.Astrophys. J., 304:849–865, 1986.

    Google Scholar 

  16. A. Borysow and L. Frommhold. Collision induced rototranslational absorption spectra of N2−N2 pairs for temperatures from 50 to 300 K.Astrophys. J., 305, 1986.

  17. G. Birnbaum, A. Borysow, and H.G. Sutter. Measurement and analysis of the far infrared absorption spectrum of the gaseous mixture H2−CH4.J.Q.S.R.T., 1986.submitted.

  18. R. J. Le Roy and J. Scott Carley. Spectroscopy and potential energy surfaces of van der Waals molecules. In K. P. Lawley, editor.Potential Energy Surfaces. pages 353–420. John Wiley Sons Ltd. 1980.

  19. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham.Intermolecular Forces. Clarendon Press, Oxford, 1981.

    Google Scholar 

  20. J. P. McTague and G. Birnbaum. Collision-induced light scattering in gases. I. The rare gases: Ar. Kr and Xe.Phys. Rev., A 3:1376, 1971.

    Google Scholar 

  21. G. C. Tabisz. Collision-induced Rayleigh and Raman scattering. InSpecialist Periodical Reports, pages 136–173, Chem. Soc., London 1979.

    Google Scholar 

  22. L. Frommhold. Collision induced scattering of light and the diatom polarizability. InAdvances in Chemical Physics, pages 1–72, Wiley Interscience, New York, 1981.

    Google Scholar 

  23. R. H. Tipping. Collision induced effects in planetary atmospheres. pages 727–738, Ref. [5].Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  24. H. L. Welsh. The pressure induced infrared spectrum of hydrogen and its application to the study of planetary atmospheres.J. Atmos. Sciences, 26:835, 1969.

    Google Scholar 

  25. G. Herzberg. The atmospheres of the planets.J. Roy. Astron. Soc. Can., 45:100, 1952.

    Google Scholar 

  26. L. M. Trafton. The pressure induced monochromatic translational absorption coefficients for homopolar and nonpolar gases and gas mixtures with particular application to H2.Astrophys. J., 146:558, 1966.

    Google Scholar 

  27. L. M. Trafton. On the He−H2 thermal opacity in planetary atmospheres.Astrophys. J., 179:971, 1973.

    Google Scholar 

  28. G. B. Field, W. B. Somerville, and K. Dressler. Hydrogen molecules in astronomy.Annual Review of Astronomy and Astrophysics, 4:207–245, 1966.

    Google Scholar 

  29. J. M. Shull and S. Beckwith. Interstellar molecular hydrogen.Annual Review of Astronomy and Astrophysics. 20:163–190, 1982.

    Google Scholar 

  30. A. R. W. McKellar. Possible identification of sharp features in the Voyager far-infrared spectra of Jupiter and Saturn.Can. J. Phys., 62:760–763. 1984.

    Google Scholar 

  31. L. Frommhold, R. Samuelson, and G. Birnbaum. Hydrogen dimer structures in the far-infrared spectra of Jupiter and Saturn.Astrophys. J., 283:L79-L82, 1984.

    Google Scholar 

  32. R. E. Samuelson, R. A. Hanel, V. G. Kunde, and W. C. Maguire, Mean molecular weight and hydrogen abundance of Titan's atmosphere.Nature, 292:688–693, 1981.

    Google Scholar 

  33. G. F. Lindal, G. E. Wood, H. B. Hotz, D. N. Sweetnam, V. R. Eshleman, and G. L. Tyler. The atmosphere of Titan: An analysis of the Voyager 1 radio ocultation measurements.Icarus, 53:348, 1983.

    Google Scholar 

  34. N. I. Moskalenko, Y. A. Il'in, S. N. Parzhin, and L. V. Rodinov. Absorption of compressed oxygen.Atm. and Oceanic Phys., 15:632, 1979.

    Google Scholar 

  35. Yu. M. Timoveef and M. V. Tonkov. On the influence of the induced oxygen absorption band on the transformation of radiation in the 6 μm region in the Earth's atmosphere.Phys. of Atm. and Ocean., 14:614–619, 1978. (In Russian).

    Google Scholar 

  36. W. Ho, I. A. Kaufman, and P. Thaddeus. Laboratory measurements of microwave absorption in models of the atmosphere of Venus.J. Geophys. Res., 71:5091, 1966.

    Google Scholar 

  37. T. A. Mutch. ‘Venus’ atmosphere.J. Geophys. Res., 85:7573, 1980.

    Google Scholar 

  38. V. E. Zuev.Laser beams in the atmosphere. Consultants Bureau, New York, 1982.

    Google Scholar 

  39. A. D. Buckingham. Permanent and induced molecular moments and longrange intermolecular forces.Advances in Chemical Physics, 12:107–141, 1967.

    Google Scholar 

  40. T. K. Bose. A comparative study of the dielectric, refractive and Kerr virial coefficients. pages 49–66,Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  41. H. Sutter. Dielectric polarization in gases. InSpecialist Periodic Report—Dielectric and Related Molecular Processes, pages 65–99. Chemical Society, London, 1972. volume 1.

    Google Scholar 

  42. J. van Kranendonk. Induced infrared absorption in gases. Calculation of the binary absorption coefficients of symmetrical diatomic molecules.Physica, 24:347, 1958.

    Google Scholar 

  43. J. van Kranendonk. Induced infrared absorption in gases. Calculation of the ternary absorption coefficients of symmetrical diatomic molecules.Physica. 25:337, 1959.

    Google Scholar 

  44. J. D. Poll and J. L. Hunt. On the moments of pressure induced spectra of gases.Canadian J. Phys., 54:461–470, 1976.

    Google Scholar 

  45. S. Bratos, B. Guillot, and G. Birnbaum. Theory of collision-induced light scattering and absorption in dense rare gas fluids. pages 363–382,Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  46. P. A. Madden. Interaction-induced phenomena. In A. J. Barnes, W. J. Orville Thomas, and J. Yarwood, editors,Molec. Liquids. page 431, Reidel, Dordrecht, 1984.

    Google Scholar 

  47. P. A. Madden. Interaction-induced vibrational spectra in liquids. pages 399–414,Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  48. K. L. C. Hunt. Classical multipole models: Comparison withab initio and experimental results. pages 1–28,Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  49. W. Meyer. Ab initio calculations of collision-induced dipole moments. pages 29–48,Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  50. A. D. Buckingham. L'absorption des ondes micrometriques induite par la pression dans des gaz non polaries.Colloq. Int. C.N.R.S., 77:57, 1959.

    Google Scholar 

  51. S. P. Reddy. Induced vibrational absorption in the hydrogens. pages 129–168.Phenomena Induced by Intermolec, Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  52. P. Dore and A. Filabozzi. On the nitrogen-induced far infrared absorption spectra.Can. J. Phys., 1986, in press.

  53. P. Codastefano, P. Dore, and L. Nencini. Far-infrared absorption spectrum of the CH4−H2.J.Q.S.R.T., 36:239–247, 1986.

    Google Scholar 

  54. P. Codastefano and P. Dore. Far infrared absorption of the N2−H2 gaseous mixture.J.Q.S.R.T., 1986,in press.

  55. E. R. Cohen, L. Frommhold, and G. Birnbaum. Analysis of the farinfrared H2−He spectrum.J. Chem. Phys., 77:4933–4941, 1982. Erratum:ibid., vol. 78 (1983) 5283.

    Google Scholar 

  56. W. Meyer and L. Frommhold. Collision induced rototranslational spectra of H2−He from an accurateab initio potential surface.Phys. Rev., A 34:2771–2779, 1986.

    Google Scholar 

  57. I. R. Dagg. Collision-induced absorption in the microwave region. pages 95–108,Phenomena Induced by Intermolec, Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  58. D. R. Bosomworth and H. P. Gush. Collision-induced absorption of compressed gases in the far infrared, Part I,Can J. Phys., 43:729, 1965.

    Google Scholar 

  59. W. Meyer and L. Frommhold,ab initio calculations of the dipole moment of He−Ar and the collision induced absorption spectra.Phys. Rev., A 33:3807–3814, 1986.

    Google Scholar 

  60. W. Meyer and L. Frommhold. Collision induced rototranslational spectra of H2−Ar from an accurateab initio potential surface.Phys. Rev., A 34:2936–2941, 1986.

    Google Scholar 

  61. L. Frommhold and W. Meyer. Collision induced rotovibrational spectra of H2−He pairs from first principles.Phys. Rev., A 35, 1987,in press.

  62. W. Meyer, L. Frommhold, and G. Birnbaum.ab initio induced dipole and collision induced rototranslational spectra of hydrogen pairs. 1987,to be submitted.

  63. J. van Kranendonk and R. B. Bird. Pressure induced absorption. I. The calculation of pressure induced absorption in pure hydrogen and deuterium.Physica, 17:953–967, 1951.

    Google Scholar 

  64. J. van Kranendonk. Theory of induced infrared absorption.Physica, 23:825, 1957.

    Google Scholar 

  65. J. van Kranendonk and Z. J. Kiss. Theory of the pressure induced rotational spectrum of hydrogen.Can. J. Phys., 37:1187, 1959.

    Google Scholar 

  66. J. D. Poll and J. van Kranendonk. Theory of translational absorption in gases.Can. J. Phys., 39:189–204, 1961.

    Google Scholar 

  67. M. Mizushima. A theory of pressure absorption.Phys. Rev., 76:1268, 1949 Erraturn:ibid. vol. 77 (1950) 149.

    Google Scholar 

  68. M. Mizushima. On the infrared absorption of the hydrogen molecule.Phys. Rev., 77:150, 1950.

    Google Scholar 

  69. F. R. Britton and M. F. Crawford. Theory of collision-induced absorption in hydrogen and deuterium.Can. J. Phys., 36:761, 1958.

    Google Scholar 

  70. J. P. Colpa and J. A. A. Ketelaar. The pressure-induced rotational absorption spectrum of hydrogen: II.Mol. Phys., 1:343, 1958.

    Google Scholar 

  71. G. Birnbaum, B. Guillot, and S. Bratos. Theory of collision-induced lineshapes: Absorption and light-scattering at low density.Adv. Chem. Phys., 51:49–112, 1982.

    Google Scholar 

  72. J. Borysow and L. Frommhold. The infrared and Raman line shapes of pairs of interacting molecules. pages 67–94,Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  73. H. F. Schaefer III, editor.Methods of Electronic Structure Theory. Plenum Press, New York and London, 1977.

    Google Scholar 

  74. M. Moraldi. Quantum mechanical spectral moments in collision induced light scattering and collision induced absorption in rare gases at low densities.Chem. Phys., 78:243–250, 1983.

    Google Scholar 

  75. M. Moraldi, A. Borysow, and L. Frommhold. Quantum sum formulae for the collision induced spectroscopies: Molecular systems as H2−H2.Chem. Phys., 86:339–347, 1984.

    Google Scholar 

  76. M. H. Profitt, J. W. Keto, and L. Frommhold. Collision-induced Raman spectra and diatom polarizabilities of the rare gases—an update.Can. J. Phys., 59:1459–1474, 1981.

    Google Scholar 

  77. F. Barocchi, M. Zoppi, M. H. Profitt, and L. Frommhold. Determination of the collision—induced depolarized Raman light scattering cross section of the argon diatom.Can. J. Phys., 59:1418–1420, 1981.

    Google Scholar 

  78. F. Barocchi and M. Zoppi. Collision induced light scattering spectra and pair polarizability of gaseous argon.Phys. Lett. A., 66:99–102, 1978.

    Google Scholar 

  79. F. Barocchi and M. Zoppi. Experimental determination of two-body spectrum and pair polarizability of argon. pages 237–262,Intermolecular Spectroscopy and Dynamical Properties of Dense Systems—Proceedings of the Int. School of Physics “Enrico Fermi”. Course LXXV. North-Holland Publ. Company, Amsterdam, 1980.

    Google Scholar 

  80. F. Barocchi and M. Zoppi. Experimental determination of two-body collision-induced light scattering of helium. pages 263–274,Intermolecular Spectroscopy and Dynamical Properties of Dense Systems—Proceedings of the Int. School of Physics “Enrico Fermi”, Course LXXV. North-Holland Publ. Company, Amsterdam, 1980.

    Google Scholar 

  81. G. Birnbaum, Shih-I Chu, A. Dalgarno, L. Frommhold, and E. L. Wright. Theory of collision-induced translation-rotation spectra: H2−He.Phys. Rev., 29A:595–604, 1984.

    Google Scholar 

  82. A. Raczynski. Collision induced absorption in a He−Ar mixture.Chem. Phys., 72:321–325, 1982.

    Google Scholar 

  83. L. Frommhold, K. H. Hong, and M. H. Proffitt. Absolute cross sections for collis on induced scattering of light by binary pairs of argon atoms.Mol. Phys., 35:665–679, 1978.

    Google Scholar 

  84. A. Borysow and L. Frommhold. Theoretical collision induced rototranslational absorption spectra for modeling Titan's atmosphere: H2−N2 pairs.Astrophys. J., 303:495–510, 1986.

    Google Scholar 

  85. A. Borysow and L. Frommhold. Collision induced rototranslational absorption spectra of binary methane complexes (CH4−CH4).J. Molec. Spectroscopy, 1987,in press.

  86. J. Schäfer and W. Meyer. Collision induced dipole radiation of normal hydrogen gas in frequency range of the cosmic background. In J. Eichler. I. V. Hertel, and N. Stolterfoht, editors,Electronic and Atomic Collisions, pages 524–534, 1984.

  87. M. Moraldi, A. Borysow, J. Borysow, and L. Frommhold. Collision induced rototranslational spectra of H2−He: Accounting for the anisotropic interaction.Phys. Rev., A 34:632–635, 1986.

    Google Scholar 

  88. M. Moraldi, A. Borysow, and L. Frommhold. Effects of the anisotropic interaction on collision induced rototranslational spectra of H2−He pairs.Phys. Rev. A, 1987, in press.

  89. J. D. Poll.Collision induced spectroscopy. PhD thesis, University of Toronto, 1960.

  90. G. Birnbaum, M. Krauss, and L. Frommhold. Collision-induced dipoles of rare gas mixtures.J. Chem. Phys., 80:2669–2674, 1984.

    Google Scholar 

  91. W. Meyer, P. C. Hariharan, and W. Kutzelnigg.Ab initio potential surface for H2−He.J. Chem. Phys., 73:1880, 1980.

    Google Scholar 

  92. J. Schäfer and W. E. Köhler. Quantum calculations of rotational and NMR relaxation, depolarized Rayleigh and rotational Raman line shapes for H2−He and HD-He mixtures.Physica, 129 A:469–502, 1985.

    Google Scholar 

  93. P. E. S. Wormer and G. van Dijk.Ab initio calculations of the collision induced dipole in H2−He II: S.C.F. results and comparison with experiment.J. Chem. Phys., 70:5695–5702, 1979.

    Google Scholar 

  94. G. Birnbaum. Far-infrared absorption in H2 and H2−He mixtures.J.Q.S.R.T., 19:51–62, 1978.

    Google Scholar 

  95. G. Birnbaum, G. Bachet. and L. Frommhold. Experimental and theoretical investigation of the far infrared spectrum of H2 and He mixtures. 1987,to be published.

  96. J. Borysow.unpublished work.

  97. G. Birnbaum and P. Dore. Rototranslational spectra of H2−Ar. 1987,to be published.

  98. G. Bachet, E. R. Cohen, P. Dore, and G. Birnbaum. The translational rotational absorption spectrum of hydrogen.Can. J. Phys., 61:591–603, 1983.

    Google Scholar 

  99. P. Dore, L. Nencini, and G. Birnbaum. Far infrared absorption in normal H2 from 77 to 298 K.J.Q.S.R.T., 30:245–253, 1983.

    Google Scholar 

  100. T. Z. Martin, D. P. Cruikshank, C. P. Pilcher, and W. M. Sinton. Pressure induced absorption by H2 in the atmospheres of Jupiter and Saturn.Icarus, 27:391–406, 1976.

    Google Scholar 

  101. J. L. Linsky. On the pressure-induced opacity of molecular hydrogen in late-type stars.Astrophys. J., 156:989, 1969.

    Google Scholar 

  102. D. Gautier, A. Marten, J. P. Baluteau, and G. Bachet. Unexplained features in the FIR spectra of Jupiter and Saturn.Canadian J. Phys., 61:1455, 1983.

    Google Scholar 

  103. A. R. W. McKellar and H. L. Welsh. Spectra of [H2]2, [D2]2, and H2−D2 van der Waals complexes.Can. J. Phys., 52:1082, 1974.

    Google Scholar 

  104. G. Danby and D. R. Flower. Theoretical studies of van der Waals molecules: the (H2)2 dimer.J. Phys. B, 16:3411–3422, 1983.

    Google Scholar 

  105. P. D. Dacre and L. Frommhold. Rare gas diatom polarizabilities.J. Chem. Phys., 76:3447–3460, 1982.

    Google Scholar 

  106. M. S. Brown and L. Frommhold. Dimer features in the translational depolarized Raman spectra of molecular hydrogen pairs.Chem. Phys. Letters. 127:197–199, 1986.

    Google Scholar 

  107. A. Kudian, H. L. Welsh, and A. Watanabe. Spectra of H2−Ar, H2−N2, and H2−CO van der Waals complexes.J. Chem. Phys., 47:1553, 1967.

    Google Scholar 

  108. P. Dore, A. Borysow, and L. Frommhold. Rototranslational far infrared absorption spectra of H2−N2 pairs.J. Chem. Phys., 84:5211–5213, 1986.

    Google Scholar 

  109. K. Fox and S. Kim. An identification of N2−H2 dimers in the atmosphere of Titan.Bulletin of the Am. Astronom. Soc., 80:706, 1984.

    Google Scholar 

  110. A. Borysow, L. Frommhold, and P. Dore. Rototranslational far infrared absorption spectra of H2−CH4 pairs.J. Chem. Phys. 85:4750–4752. 1986.

    Google Scholar 

  111. I.R. Dagg, A. Anderson, S. Yan, W. Smith, and L.A.A. Read. Collision-induced absorption in nitrogen at low temperatures.Can. J. Phys., 63:625–631, 1985.

    Google Scholar 

  112. U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis. The far infrared absorption spectrum of N2 the gas and liquid phases.J. Chem. Phys., 63:2570–2576, 1975.

    Google Scholar 

  113. D. R. Bosomworth and H. P. Gush. Collision-induced absorption of compressed gases in the far infrared. Part II.Can. J. Phys., 43:751, 1965.

    Google Scholar 

  114. N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith. Temperature dependent collision induced absorption in N2.Canadian J. Phys., 62:338–347, 1984.

    Google Scholar 

  115. I.R. Dagg, A. Anderson, S. Yan, W. Smith, C.G. Joslin, and L.A.A. Read. Collision-induced absorption in a gaseous mixture of nitrogen and argon.Can. J. Phys. 64:7–15, 1986.

    Google Scholar 

  116. I. R. Dagg and C. G. Gray. Collision-induced absorption in N2 at various temperatures. pages 109–118 Ref. [5].Phenomena Induced by Intermolec. Internations. Plenum Press, New York, 1985.

    Google Scholar 

  117. J. L. Urbaniak, I. R. Dagg, and G. E. Reesor. Collision induced microwave absorption in N2. CH4 and CF4 in gaseous and liquid phases.Canadian J. Phys., 55:496–505, 1977.

    Google Scholar 

  118. P. Dore and A. Filabozzi. A new analysis of the far infrared absorption spectrum of gaseous nitrogen.Unpublished report, 1986.

  119. G. Brocks and A. van der Avoird. Infrared spectra of the van der Waals molecule [N2]2.Mol. Phys., 55:11–32, 1985.

    Google Scholar 

  120. G. Brocks and A. van der Avoird. Contribution of bound dimers, [N2]2, to the interaction induced infrared spectrum of nitrogen. pages 699–714. Ref. [5].Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  121. P. Dore.unpublished.

  122. P. Codastefano, P. Dore, and L. Nencini. Temperature dependence of the far-infrared absorption spectrum of gaseous methane.J.Q.S.R.T., 35:225–263, 1986.

    Google Scholar 

  123. P. Codastefano, P. Dore, and L. Nencini. Far infrared absorption spectra spectra in gaseous methane from 138 to 296 K. pages 119–128, Ref. [5].Phenomena Induced by Intermolec. Interactions. Plenum Press, New York, 1985.

    Google Scholar 

  124. G. Birnbaum, L. Frommhold, L. Nencini, and H. Sutter. The collision-induced far-infrared absorption band of gaseous methane in the region 30–900cm −1.Chem. Phys. Lett., 100:292–296, 1983.

    Google Scholar 

  125. I.R. Dagg, A. Anderson, S. Yan, and W. Smith. Collision-induced absorption in gaseous methane at low temperatures.Can. J. Phys., 1986, in press.

  126. P. Dore and G. Birnbaum. Anomalus absorption in the far infrared spectrum of gaseous methane.Chem. Phys., 1987,to be submitted.

  127. A. Rosenberg and I. Ozier. The forbidden (JJ+1) spectrum of CH4 in the ground vibronic state.Journal of Molecular Spectroscopy, 56:124–132, 1975.

    Google Scholar 

  128. K. Kerl and H. Häusler. Mean polarizabilities and second virial coefficients of the gases Ar. CH4, C2−H6, C3−H8 and C(CH3)4.Ber. Bunsenges. Phys. Chem., 88:992–997, 1984.

    Google Scholar 

  129. U. Hohm and K. Kerl. Temperature dependence of mean molecular polarizability of gas molecules.Mol. Phys., 58:541–550, 1986.

    Google Scholar 

  130. G. Birnbaum. The shape of collision broadened lines from resonance to the far wings.J.Q.S.R.T., 21:597–607, 1979.

    Google Scholar 

  131. J.H. Van Vleck and D.L. Huber. Absorption, emission, and linewidths: A semihistorical perspective.Rev. Mod. Phys., 49:939–959, 1977.

    Google Scholar 

  132. H. L. Welsh and J. L. Hunt. Line shapes in pressure induced absorption.J. Quant. Spectroscopy and Rad. Transfer, 3:385, 1963.

    Google Scholar 

  133. B.J. Berne, J. Jortner, and R.G. Gordon. Vibrational relaxation of diatomic molecules in gases and liquids.J. Chem. Phys., 47:1600–1608, 1967.

    Google Scholar 

  134. P.A. Egelstaff. Neutron scattering studies of liquid diffusion.Adv. Phys., 11:203–232, 1962.

    Google Scholar 

  135. J. Borysow, M. Moraldi, and L. Frommhold. The collision-induced spectroscopies. Concerning the desymmetrization of classical line shape.Mol. Phys., 56:913–922, 1985.

    Google Scholar 

  136. J. Borysow, L. Trafton, L. Frommhold, and G. Birnbaum. Modelling of pressure-induced far infrared absorption spectra: Molecular hydrogen pairs.Astrophys. J., 296:644–654, 1985.

    Google Scholar 

  137. G. Birnbaum and E. R. Cohen. Theory of line shapes in pressure induced absorption.Can. J. Phys., 54:593–602, 1976.

    Google Scholar 

  138. A. Borysow, M. Moraldi, and L. Frommhold. Modelling of collision-induced absorption spectra.J. Q. S. R. T., 31:235–245, 1984.

    Google Scholar 

  139. M. Moon and D.W. Oxtoby. Collision-induced absorption in gaseous N2.J. Chem. Phys., 84:3830–3842, 1986.

    Google Scholar 

  140. D. A. McQuarrie and R. B. Bernstein. Calculated collision-induced absorption spectrum for He-Ar.J. Chem. Phys., 49:1958, 1968.

    Google Scholar 

  141. J. Borysow, M. Moraldi, L. Frommhold, and J.D. Poll. Spectral line shape in collision induced absorption: An improved constant acceleration approximation.J. Chem. Phys., 84:4277–4280, 1986.

    Google Scholar 

  142. A. Borysow and L. Frommhold. Collision induced rototranslational absorption spectra of CH4-CH4 pairs at temperatures from 50 to 300 K.Astrophys. J., 1987. in press.

  143. U. Buontempo, S. Cunsolo, P. Dore, and P. Maselli, Density behaviour of rototranslational spectrum of gaseous N2.Mol. Phys., 38:2111–2115, 1979.

    Google Scholar 

  144. U. Buontempo, P. Maselli, and L. Nencini, Density effects on the translational motion from infrared induced rotational spectra of N2.Can. J. Phys., 61:1498–1502, 1983.

    Google Scholar 

  145. U. Buontempo, P. Codastefano, S. Cunsolo, P. Dore, and P. Maselli, Density effects on the rotational lines of D2 in D2-Ar mixtures.Can. J. Phys., 59:1495–1498, 1981.

    Google Scholar 

  146. U. Buontempo, P. Codastefano, S. Cunsolo, P. Dore, and P. Maselli. New analysis of the density effects observed on the rotational line profile of induced spectra of H2 and D2 dissolved in argon.Can. J. Phys., 61:156–163, 1983.

    Google Scholar 

  147. U. Buontempo, Cunsolo. S., P. Dore, and P. Maselli. Molecular motions in liquids from infrared spectra.Intermol. Spec. Dyn. Prop., LXXV:211–227, 1980.

    Google Scholar 

  148. N. D. Hamer, B. C. Freasier, and R. J. Bearman. Density effects in collision-induced light absorption of inert gas mixtures.Chem. Phys., 21:239–249, 1977.

    Google Scholar 

  149. W. A. Steele and G. Birnbaum. Molecular calculations of moments of the induced spectra for N2, O2, and CO2.J. Chem. Phys., 72:2250–2259, 1980.

    Google Scholar 

  150. C. G. Gray, K. E. Gubbins, B. W. N. Lo, and J. D. Poll. Theory of collision-induced absorption in liquids I: Rare gas liquids.Mol. Phys., 32:989–994, 1976.

    Google Scholar 

  151. A. Raczynski and G. Staszewska. Density dependence of moments and lineshape in collision-induced absorption in He+Ar.Mol. Phys., 58:919–928, 1986.

    Google Scholar 

  152. M. S. H. Ling and M. Rigby. Towards an intermolecular potential for nitrogen.Mol. Phys., 51:855–882, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borysow, A., Frommhold, L. & Dore, P. Far infrared absorption by pairs of nonpolar molecules. Int J Infrared Milli Waves 8, 381–414 (1987). https://doi.org/10.1007/BF01010737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010737

Key Words

Navigation