Skip to main content
Log in

Enhancedt −3/2 long-time tail for the stress-stress time correlation function

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Nonequilibrium molecular dynamics is used to calculate the spectrum of shear viscosity for a Lennard-Jones fluid. The calculated zero-frequency shear viscosity agrees well with experimental argon results for the two state points considered. The low-frequency behavior of shear viscosity is dominated by anω 1/2 cusp. Analysis of the form of this cusp reveals that the stress-stress time correlation function exhibits at −3/2 “long-time tail.” It is shown that for the state points studied, the amplitude of this long-time tail is between 12 and 150 times larger than what has been predicted theoretically. If the low-frequency results are truly asymptotic, they imply that the cross and potential contributions to the Kubo-Green integrand for shear viscosity exhibit at −3/2 long-time tail. This result contradicts the established theory of such processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Dorfman and H. van Beijeren, The Kinetic Theory of Gases, inStatistical Mechanics, Part B, B. J. Berne, ed. (Plenum, 1977), p. 65.

  2. Y. Pomeau and P. Resibois,Physics Reports 19:63 (1975); see p. 126.

    Google Scholar 

  3. B. J. Alder and T. E. Wainwright,Phys. Rev. A 1:18 (1970).

    Google Scholar 

  4. T. E. Wainwright, B. J. Alder, and D. Gass,Phys. Rev. A 4:233 (1971).

    Google Scholar 

  5. D. Levesque and W. T. Ashurst,Phys. Rev. Lett. 33:277 (1974).

    Google Scholar 

  6. M. H. Ernst, E. H. Hauge, and J. M. J. Van Leeuwen,Phys. Rev. Lett. 25:1254 (1970);J. Stat. Phys. 15:7 (1976).

    Google Scholar 

  7. D. J. Evans,Molec. Phys. 37:1745 (1979).

    Google Scholar 

  8. W. T. Ashurst and W. G. Hoover, inTheoretical Chemistry Advances and Perspectives, Vol. 1, H. Eyring and D. Henderson, eds. (Academic Press, 1975).

  9. W. T. Ashurst and W. G. Hoover, Sandia Report SAND 77-8614.

  10. B. J. Berne,Faraday Symposium 11:48 (1977).

    Google Scholar 

  11. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, 1976).

  12. D. J. Evans and W. B. Streett,Molec. Phys. 36:161 (1978).

    Google Scholar 

  13. L. Verlet,Phys. Rev. 159:98 (1967).

    Google Scholar 

  14. F. H. Ree, T. Ree, and H. Eyring,Ind. Eng. Chem. 50:1036 (1958).

    Google Scholar 

  15. A. Michels, A. Botzeau, and W. Schuurman,Physica 20:1141 (1955).

    Google Scholar 

  16. W. M. Haynes,Physica 67:440 (1973).

    Google Scholar 

  17. F. C. Brown,The Physics of Solids (Benjamin, 1967), Appendix I.

  18. G. Doetsch,Guide to the Applications of Laplace Transforms (Van Nostrand, 1961).

  19. J. Bosse, W. Gotze, and M. Lucke,Phys. Rev. A 17:434 (1978).

    Google Scholar 

  20. S. Murad, D. J. Evans, K. E. Gubbins, W. B. Streett, and D. J. Tildersely,Molec. Phys. 37:725 (1979).

    Google Scholar 

  21. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. A 4:2055 (1971).

    Google Scholar 

  22. D. Levesque, L. Verlet, and J. Kurkijarvi,Phys. Rev. A 7:1690 (1973).

    Google Scholar 

  23. W. W. Wood, inThe Boltzmann Equation, E. G. D. Cohen and W. Thirring, eds. (Springer-Verlag, 1973), p. 468.

  24. R. Zwanzig, inStatistical Mechanics, S. A. Rice, K. F. Freed, and J. C. Light, eds. (Chicago University Press, 1972), p. 241.

  25. W. T. Ashurst and W. G. Hoover,Phys. Rev. A 11:658 (1975).

    Google Scholar 

  26. W. Wood, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, D.J. Enhancedt −3/2 long-time tail for the stress-stress time correlation function. J Stat Phys 22, 81–90 (1980). https://doi.org/10.1007/BF01007990

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007990

Key words