Skip to main content
Log in

The influence of cell design and electrolysis parameters on the cathodic coupling of butadiene and carbon dioxide in acetonitrile. I. Undivided parallel plate configurations

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The reduction of carbon dioxide in the presence of excess butadiene in acetonitrile leads to a mixture of carboxylic acids, pentenoic acids (two isomers), hexenedioic acids (two isomers) and decadienedioic acids (three isomers). The total current yield can exceed 60%. The current efficiency and the ratio of products are functions of both cell design and other electrolysis parameters. This paper reports studies of this coupling reaction in several undivided flow cells, where cyclindrical cathodes (lead-plated nickel gauze, reticulated carbon of various porosity, carbon felt) were surrounded by a platinum gauze anode. The electrolyte was ditetraethylammonium oxalate and/or tetraethyl-ammonium formate so that the counter electrode reaction was the oxidation of the anions to CO2 or CO2+H+, respectively. This choice avoids solvent decomposition or other unwanted reactions at the anode, and may be helpful to the cathode chemistry by replenishing the cathode active species, CO2, and possibly also creating a controlled supply of protons to the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. W. Jansson,J. Appl. Electrochem. 12 (1982) 163.

    Google Scholar 

  2. ,Phil. Trans. Royal Soc. London A302 (1981) 285.

    Google Scholar 

  3. D. E. Danly, ‘Emerging Opportunities for Electroorganic Processes’, Marcel Dekker, New York (1984).

    Google Scholar 

  4. , in ‘Organic Electrochemistry’ (edited by M. M. Baizer and H. Lund), Marcel Dekker, New York (1983).

    Google Scholar 

  5. F. C. Walsh and R. J. Marshall,Surf. Technol. 24 (1985) 45.

    Google Scholar 

  6. M. Fleischmann and G. Kelsall,Electrochem. Soc. Proc. 10 (1984) 572.

    Google Scholar 

  7. R. E. W. Jansson and N. R. Tomov,Chem. Technol. Biotechnol. 30 (1980) 110.

    Google Scholar 

  8. D. K. Johnson and R. E. W. Jansson,30 (1980) 200.

    Google Scholar 

  9. M. M. Baizer,Chem. Ind. (1979) 435.

  10. D. Pletcher and J. Tietje Girault,I. Chem. E. Symp. Series 98 (1986) 15.

    Google Scholar 

  11. J. C. Gressin, D. Michelet, L. Nadjo and J. M. Saveant,Nouv. J. Chim. 3 (1979) 545.

    Google Scholar 

  12. C. Amatore and J. M. Saveant,J. Amer. Chem. Soc. 103 (1981) 5021.

    Google Scholar 

  13. ,J. Electroanal. Chem. 125 (1981) 232.

    Google Scholar 

  14. H. L. Chum and M. M. Baizer, ‘The Electrochemistry of Biomass and Derived Materials’, ACS Monograph 183 (1985) chapter 3.

  15. J. W. Loveland, US Patent 3032489 (1962).

  16. W. C. Neikam, US Patent 3344045 (1967).

  17. J. F. Nobis and M. Faye, US Patent 2865953 (1958).

  18. C. E. Frank and W. E. Foster,J. Org. Chem. 26 (1961) 303.

    Google Scholar 

  19. P. A. Moshkin, N. J. Kutsenko and L. K. Filippenko,Plastmassy 7 (1962) 59.

    Google Scholar 

  20. A. Musco, R. Santi, G. P. Chrusoli, Italian Patent 27277 (1977).

  21. H. D. Koehler and B. Schleppinghoff, European Patent 43038 (1982).

  22. W. J. M. Van Tilborg and C. J. Smit, UK Patent, 2069533 (1981).

  23. W. J. M. Van Tilborg and C. J. Smit,Recl. Trav. Chim. Pays Bas 100 (1981) 437.

    Google Scholar 

  24. M. M. Baizer and R. C. Hallcher,J. Electrochem. Soc. 123 (1976) 809.

    Google Scholar 

  25. K. Park, P. N. Pintauro, M. M. Baizer and K. Nobe,132 (1985) 1850.

    Google Scholar 

  26. A. G. Kornienko, L. A. Mirkind and M. Yu Fioshin,Sov. Electrochem. 5 (1969) 946.

    Google Scholar 

  27. R. V. Lindsay and M. L. Peterson,J. Amer. Chem. Soc. 81 (1959) 2073.

    Google Scholar 

  28. A. V. Boussoulengas, S. Ehdaie and R. E. W. Jansson,Chem. Ind. (1979) 670.

  29. J. Fischer, Th. Lehmann and E. Heitz,J. Appl. Electrochem. 11 (1981) 743.

    Google Scholar 

  30. W. J. M. Van Tilborg, C. J. Smit and R. Engels, European Patent 0028430 (1981).

  31. R. Engels, C. J. Smit and W. J. M. Van Tilborg,Angew. Chem. Suppl.22 (1983) 691.

    Google Scholar 

  32. D. L. Stelling, C. W. Gehrke and R. W. Zumwalt,Biochem. Biophys. Res. Comm. 31 (1968) 616.

    Google Scholar 

  33. E. Jacobsen, J. L. Roberts and D. T. Sawyer,J. Electroanal. Chem. 16 (1968) 351.

    Google Scholar 

  34. E. Jacobsen and D. T. Sawyer,16 (1968) 361.

    Google Scholar 

  35. C. D. Russell,71, (1976) 81.

    Google Scholar 

  36. W. J. M. Van Tilborg and C. J. Smit, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pletcher, D., Girault, J.T. The influence of cell design and electrolysis parameters on the cathodic coupling of butadiene and carbon dioxide in acetonitrile. I. Undivided parallel plate configurations. J Appl Electrochem 16, 791–802 (1986). https://doi.org/10.1007/BF01006524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01006524

Keywords

Navigation