Skip to main content
Log in

Octopamine receptor subtypes and their modes of action

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Octopamine receptor subclasses were first proposed to explain differences in the pharmacological profiles of a range of physiological responses to octopamine obtained in the extensor-tibiae neuromuscular preparation of the locust. Thus, OCTOPAMINE1 receptors which inhibit an endogenous myogenic rhythm, increase intracellular calcium levels. Also OCTOPAMINE2 receptors which modulate neuromuscular transmission in this preparation, increase the level of adenylate cyclase activity. The current status of this classification is reviewed by examining the pharmacology of responses to octopamine in a range of preparations. It is concluded that the distinction between OCTOPAMINE1 and OCTOPAMINE2 receptor types is still valid, but that OCTOPAMINE2 receptors exhibit some tissue specific variations. Studies on a clonedDrosophila octopamine/tyramine (phenolamine) receptor are discussed and illustrate many of the difficulties presently encountered in making a definitive classification of octopamine receptors. These include the possibilities that single receptors may activate multiple second messenger systems and that different agonists may differentially couple the same receptor to different second messenger systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, P. D. 1980. Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15:317–473.

    Google Scholar 

  2. Evans, P. D. 1985. Octopamine. Pages 499–530,in Kerkut, G. A., and Gilbert, L. (eds), Comprehensive Insect Biochemistry, Physiology and Pharmacology, Pergamon Press, Oxford.

    Google Scholar 

  3. David, J. C., and Coulon, J.-F. 1985. Octopamine in invertebrates and vertebrates. A review. Prog. Neurobiol. 24:141–185.

    Google Scholar 

  4. Harmar, A. J. 1980. Neurochemistry of octopamine. Pages 97–149,in Mosnaim, A. D., and Wolff, M. E. (eds), Modern Pharmacology-Toxicology, Vol 12: Noncatecholic Phenylethylamines, Part 2, Marcel Dekker, New York and Basel.

    Google Scholar 

  5. Talamo, B. R. 1980. Function of octopamine in the nervous system. Pages 261–292,in Mosnaim, A. D., and Wolff, M. E. (eds), Modern Pharmacology-Toxicology, Vol. 12, Noncatecholic Phenylethylamines. Part 2, Marcel Dekker, New York and Basel.

    Google Scholar 

  6. Robertson, H. A. 1981. Octopamine-after a decade as a putative neuroregulator. Pages 47–73,in Youdim, M. B. H., Lovenberg, W., Sharman, D. F., and Lagnado, J. R. (eds), Essays in Neurochemistry and Neuropharmacology, vol. 5, Wiley, New York.

    Google Scholar 

  7. Williams, C. M., Couch, M. W., and Midgley, J. M. 1984. Natural occurrence and metabolism of the isomeric octopamines and synephrines. Pages 97–105,in Boulton, A. A., Baker, G. B., Dewhurst, W. G., and Sandler, M. (eds.), Neurobiology of the Trace Amines, The Humana Press, Clifton, New Jersey.

    Google Scholar 

  8. Evans, P. D. 1992. Molecular studies on insect octopamine receptors. Pages 286–296,in Pichon, Y. (ed.), Comparative Molecular Biology, Birkauser Verlag AG, Switzerland. 286–296.

    Google Scholar 

  9. Evans, P. D. 1981. Multiple receptor types for octopamine in the locust. J. Physiol. 318:99–122.

    Google Scholar 

  10. Evans, P. D., and O'Shea, M. 1978. The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. J. exp. Biol. 73:235–260.

    Google Scholar 

  11. Evans, P. D., and O'Shea, M. 1977. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature, Lond. 270:257–259.

    Google Scholar 

  12. O'Shea, M., and Evans, P. D. 1979. Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J. exp. Biol. 79:169–190.

    Google Scholar 

  13. Evans, P. D. 1984. Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a myogenic rhythm in the locust. J. exp. Biol. 110:231–251.

    Google Scholar 

  14. Evans, P. D. 1984. A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J. Physiol. (Lond.). 348:307–324.

    Google Scholar 

  15. Evans, P. D. 1984. The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J. Physiol. (Lond.). 348:325–340.

    Google Scholar 

  16. Evans, P. D. 1987. Phenyliminoimidazolidine derivatives activate both OCTOPAMINE1 and OCTOPAMINE2 receptor subtypes in locust skeletal muscle. J. exp. Biol. 129:239–250.

    Google Scholar 

  17. Orchard, I., and Lange, A. B. 1986. Pharmacological profile of octopamine receptors on the lateral oviducts of the locust,Locusta migratoria. J. Insect Physiol. 32:741–745.

    Google Scholar 

  18. Pannabecker, T., and Orchard, I. 1986. Pharmacological properties of octopamine-2 receptors in locust neuroendocrine tissue. J. Insect Physiol. 32:909–915.

    Google Scholar 

  19. Lafon-Cazal, M., and Bockaert, J. 1985. Pharmacological characterization of octopamine-sensitive adenylate cyclase in the flight muscle ofLocusta migratoria L. European J. Pharmacol. 119:53–59.

    Google Scholar 

  20. Morton, D. B. 1984. Pharmacology of the octopamine stimulated adenylate cyclase of the locust and tick CNS. Comp. Biochem. Physiol. 78C:153–158.

    Google Scholar 

  21. Wang, Z., Downer, R. G. H., Gole, J. W. D., and Orr, G. L. 1991. Characterization and pharmacological studies of an octopamine-sensitive adenylate cyclase from nerve cord ofLocusta migratoria. Arch. Int. Physiol. Biochimie. Biophys. 99:189–193.

    Google Scholar 

  22. Konings, P. N. M., Vullings, H. G. B., Van Gemert, W. M. J. B., DeLeeuw, R., Diederen, J. H. B., and Jansen, W. F. 1989. Octopamine-binding sites in the brain ofLocusta migratoria. J. Insect Physiol. 35:519–524.

    Google Scholar 

  23. Roeder, T., and Gewecke, M. 1990. Octopamine receptors in locust nervous tissue. Biochem. Pharmacol. 39:1793–1797.

    Google Scholar 

  24. Kaufmann, L., and Benson, J. A. 1991. Characterisation of a locust neuronal octopamine response. Soc. Neurosci. Abstracts 17:277.

    Google Scholar 

  25. Minhas, N., Gole, J. W. D., Orr, G. L., and Downer, R. G. H. 1987. Pharmacology of [3H]-mianserin binding in the nerve cord of the american cockroach,Periplaneta americana. Arch. Insect Biochem. Physiol. 6:191–201.

    Google Scholar 

  26. Hollingworth, R. M., and Johnstone, E. M. 1983. Pharmacology and toxicology of octopamine receptors in insects. Pages 187–192in Miyamoto J., and Kearney, P. C. (eds.), Pesticide Chemistry: Human Welfare and the Environment. Vol. 1, Pergamon Press, Oxford.

    Google Scholar 

  27. Platt, N., and Reynolds S. E. 1986. The pharmacology of the heart of a caterpillar, the tobacco hornworm,Manduca sexta. J. Insect Physiol. 32:221–230.

    Google Scholar 

  28. Arakawa, S., Gocayne, J. D., McCombie, W. R., Urquhart, D. A., Hall, L. M., Fraser, C. M., and Venter, J. C. 1990. Cloning, localization and permanent expression of aDrosophila octopamine receptor. Neuron 2:343–354.

    Google Scholar 

  29. Guillen, A., Haro, A., and Municio, A. M. 1989. A possible new class of octopamine receptors coupled to adenylate cyclase in the brain of the dipterousCeratitis capitata. Pharmacological characterization and regulation of3H-octopamine binding. Life Sciences 45:655–662.

    Google Scholar 

  30. Nathanson, J. A. 1985. Phenyliminoimidazolidines: Characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors. Mol. Pharmacol. 28:254–268.

    Google Scholar 

  31. Roeder, T. 1990. High-affinity antagonists of the locust neuronal octopamine receptor. Eur. J. Pharmacol. 191:221–224.

    Google Scholar 

  32. Harmar, A. J., and Horn, A. S. 1977. Octopamine-sensitive adenylate cyclase in cockroach brain: Effects of agonists, antagonists and guanylyl nucleotides. Molec. Pharmac. 13:512–520.

    Google Scholar 

  33. Orr, N., Orr, G. L., and Hollingworth, R. M. 1992. The Sf9 cell line as a model for studying insect octopamine-receptors. Insect Biochem. Molec. Biol. 22:591–597.

    Google Scholar 

  34. Gole, J. W. D., Orr, G. L., and Downer, R. G. H. 1987. Pharmacology of octopamine-, dopamine-, and 5-hydroxytryptamine-stimulated cyclic AMP accumulation in the corpus cardiacum of the american cockroach,Periplaneta americana. Arch. Insect Biochem. Physiol. 5:119–128.

    Google Scholar 

  35. Uzzan, A., and Dudai, Y. 1982. Aminergic receptors inDrosophila melanogaster: responsiveness of adenylate cyclase to putative neurotransmitters. J. Neurochem. 38:1542–1550.

    Google Scholar 

  36. Dudai, Y. 1982. High affinity octopamine receptors revealed inDrosophila by binding of [3H] octopamine. Neurosci. Lett. 28:163–167.

    Google Scholar 

  37. Roeder, T. 1992. A new octopamine receptor class in locust nervous tissue, the OCTOPAMINE3 (OA3) receptor. Life Sciences 50:21–28.

    Google Scholar 

  38. Schofield, P. K., and Treherne, J. E. 1985. Octopamine reduces potassium permeability of the glia that form the insect blood-brain barrier. Brain Res. 250:111–121.

    Google Scholar 

  39. Schofield, P. K., and Treherne, J. E. 1986. Octopamine sensitivity of the blood-brain barrier of an insect. J. exp. Biol. 123:432–439.

    Google Scholar 

  40. Jahagirdar, A. P., Milton, G., Viswanatha, T., and Downer, R. G. H. 1987. Calcium involvement in mediating the action of octopamine and hypertrehalosemic peptides on insect haemocytes. FEBS Letts. 219:83–87.

    Google Scholar 

  41. Saudou, F., Amlaiky, N., Plassat, J.-L., Borrelli, E., and Hen, R. 1990. Cloning and characterization of a Drosophila tyramine receptor. EMBO J. 9:3611–3617.

    Google Scholar 

  42. Downer, R. G. H. 1979. Trehalose production in isolated fat body of the American cockroach,Periplaneta americana. Comp. Biochem. Physiol. 62C:31–34.

    Google Scholar 

  43. Robb, S., Cheek, T. R., Venter, J. C., Midgley, J. M., and Evans, P. D. 1991. The mode of action and pharmacology of a clonedDrosophila phenolamine receptor. Pestic. Sci. 32:369–371.

    Google Scholar 

  44. Cheek, T. R., Jackson, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D. 1989. Simultaneous measurements of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of Fura-2 in cocultured cells. J. Cell Biol. 109:1219–1227.

    Google Scholar 

  45. Cotecchia, S., Kobilka, B. K., Daniel, K. W., Nolan, R. D., Lapetina, E. Y., Caron, M. G., Lefkowitz, R. J., and Regan, J. W. 1990. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J. Biol. Chem. 265:63–69.

    Google Scholar 

  46. Lai, J., Waite, S. L., Bloom, J. W., Yamamura, H. L., and Roeske, W. R. 1991. The m2 muscarinic acetylcholine receptors are coupled to multiple signalling pathways via pertussis toxinsensitive guanine nucleotide regulatory proteins. J. Pharmacol. exp. Ther. 258:938–944.

    Google Scholar 

  47. Yang, C. M., Chou, S.-P., and Sung, T.-C. 1991. Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Brit. J. Pharmacol. 104:613–618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, P.D., Robb, S. Octopamine receptor subtypes and their modes of action. Neurochem Res 18, 869–874 (1993). https://doi.org/10.1007/BF00998270

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998270

Key Words