Skip to main content
Log in

The discrete Korteweg-de Vries equation

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We review the different aspects of integrable discretizations in space and time of the Korteweg-de Vries equation, including Miura transformations to related integrable difference equations, connections to integrable mappings, similarity reductions and discrete versions of Painlevé equations as well as connections to Volterra systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Korteweg, D. J. and de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,Philosophical Magazine 39 (1895), 422–443.

    Google Scholar 

  2. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.: Method for solving the Korteweg-de Vries equation,Phys. Rev. Lett. 19 (1967), 1095–1097.

    Google Scholar 

  3. Zakharov, V. E. and Shabat, A. B.: Exact theory of two-dimensional self-focussing and onedimensional self-modulation of waves in nonlinear media,Sov. Phys. JETP 34 (1972), 62–69.

    Google Scholar 

  4. Ablowitz, M. J., Kaup, D., Newell, A. C., and Segur, H.: The inverse scattering transform — Fourier analysis for nonlinear problems,Stud. Appl. Math. 53 (1974), 249–315.

    Google Scholar 

  5. Bäcklund, A. V.: Über Flachentransformationen,Math. Ann. 9 (1876), 207–320; Zur Theorie der Flachentransformationen,Math. Ann. 19 (1882), 387–422.

    Google Scholar 

  6. Darboux, G.:Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal, Vols 1–4, Gauthier-Villars, Paris, 1887–1896.

    Google Scholar 

  7. Bianchi, L.:Lezioni di geometria differenziale, Enrico Spoerri, Pisa, 1894.

    Google Scholar 

  8. Nörlund, N. E.:Vorlesungen über Differenzrechnung, Kopenhagen, 1923.

  9. Birkhoff, G. D.: General theory of linear difference equations,Trans. Amer. Math. Soc. 12 (1911), 243–284; The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations,Proc. Am. Acad. Arts Sci. 49 (1913), 521–568.

    Google Scholar 

  10. Nijhoff, F. W., Quispel, G. R. W., and Capel, H. W.: Direct linearization of Nonlinear difference-difference equations,Phys. Lett. 97A (1983), 125–128.

    Google Scholar 

  11. Quispel, G. R. W., Nijhoff, F. W., Capel, H. W., and van der Linden, J.: Linear integral equations and nonlinear difference-difference equations,Physica 125A (1984), 344–380.

    Google Scholar 

  12. Nijhoff, F. W., Capel, H. W., Wiersma, G. L., and Quispel, G. R. W.: Bäcklund transformations and three-dimensional lattice equations,Phys. Lett. 105A (1984), 267–272.

    Google Scholar 

  13. Nijhoff, F. W., Capel, H., and Wiersma, G. L.: Integrable lattice systems in two- and three-dimensions, in R. Martini (ed.),Geometric Aspects of the Einstein Equations and Integrable Systems, Springer Lect. Notes Phys. Vol. 239 (1985), pp. 263–302.

  14. Wiersma, G. and Capel, H. W.: Lattice equations, hierarchies and Hamiltonian structures,Physica 142A (1987), 199–244;ibid. 149A (1988), 49–74.

    Google Scholar 

  15. Nijhoff, F. W. and Papageorgiou, V. G.: Lattice equations associated with the Landau-Lifschitz equations,Phys. Lett. 141A (1989), 269–274.

    Google Scholar 

  16. Nijhoff, F. W. and Capel, H. W.: The direct linearisation approach to hierarchies of integrable PDE's in 2+1 dimensions: I. Lattice equations and the differential-difference hierarchies,Inv. Problems 6 (1990), 567–590.

    Google Scholar 

  17. Nijhoff, F. W., Papageorgiou, V. G., Capel, H. W., and Quispel, G. R. W.: The lattice Gel'fandDikii hierarchy,Inv. Problems 8 (1992), 597–621.

    Google Scholar 

  18. Capel, H. W. and Nijhoff, F. W.: Integrable lattice equations, in A. S. Fokas and V. E. Zakharov (eds),Important Developments in Soliton Theory, Lect. Notes in Nonlinear Dynamics, Springer, 1993, pp. 38–57.

  19. Ablowitz, M. J. and Ladik, F. J.: A nonlinear difference scheme and inverse scattering,Stud. Appl. Math. 55 (1976), 213–229; On the solution of a class of nonlinear partial difference equations,ibid. 57 (1977), 1–12.

    Google Scholar 

  20. Hirota, R.: Nonlinear partial difference equations, I–III,J. Phys. Soc. Japan 43 (1977), 1424–1433, 2074–2089.

    Google Scholar 

  21. Hirota, R.: Discrete analogue of generalized Toda equation,J. Phys. Soc. Japan 50 (1981), 3785–3791.

    Google Scholar 

  22. Levi, D., Pilloni, L., and Santini, P. M.: Integrable three-dimensional lattices,J. Phys. A: Math. Gen. 14 (1981), 1567–1575.

    Google Scholar 

  23. Date, E., Jimbo, M., and Miwa, T.: Method for generating discrete soliton equations, I–V,J. Phys. Soc. Japan 51 (1982), 4116–4131,52 (1983), 388–393, 761–771.

    Google Scholar 

  24. Kac, M. and van Moerbeke, P.: On an explicitly soluble system on nonlinear differential equations related to certain Toda lattices,Adv. Math. 16 (1975), 160–169.

    Google Scholar 

  25. Krichever, I. M. and Novikov, S. P.: Holomorphic bundles over algebraic curves and nonlinear equations,Russ. Math. Surv. 35 (1980), 53–79.

    Google Scholar 

  26. Faddeev, L. D. and Tahktajan, L. A.:Liouville Model on the Lattice, Lect. Notes Phys., Vol 246, Springer, 1986, pp. 166–179.

    Google Scholar 

  27. Volkov, A. Yu.: Miura transformation on the lattice,Theor. Math. Phys. 74 (1988), 96–99.

    Google Scholar 

  28. Drinfel'd, V. G. and Sokolov, V. V.: Equations of KdV type and simple Lie algebras,Sov. Math. Dokl. 23 (1981), 457–462;J. Sov. Math. 30 (1985), 1975.

    Google Scholar 

  29. Quispel, G. R. W., Nijhoff, F. W., and Capel, H. W.: Linearization of the Boussinesq equation and of the modified Boussinesq equation,Phys. Lett. 91A (1982), 143–145.

    Google Scholar 

  30. Airault, H., McKean, H., and Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem,Comm. Pure Appl. Math. 30 (1977), 95–148.

    Google Scholar 

  31. Nijhoff, F. W. and Pang, G. D.: A time-discretized version of the Calogero-Moser model,Phys. Lett. 191A (1994), 101–107.

    Google Scholar 

  32. Nijhoff, F. W. and Pang, G. D.: Discrete-time Calogero-Moser model and lattice KP equations, in D. Levi, L. Vinet and P. Winternitz (eds),Proc. of the Int. Workshop on Symmetries and Integrability of Difference Equations, CRM Lecture Notes and Proceedings, to appear, hep-th/9409071.

  33. Nijhoff, F. W., Ragnisco, O., and Kuznetsov, V.: Integrable time-discretisation of the Ruijsenaars-Schneider model, Preprint No. 94-27, University of Amsterdam, hep-th/9412170.

  34. Papageorgiou, V. G., Nijhoff, F. W., and Capel, H. W.: Integrable mappings and nonlinear integrable lattice equations,Phys. Lett. 147A (1990), 106–114.

    Google Scholar 

  35. McMillan, E. M.: in W. E. Brittin and H. Odabasi (eds),Topics in Physics, Colorado Associated Univ. Press, Boulder, 1971, p. 219.

    Google Scholar 

  36. Capel, H. W., Nijhoff, F. W., and Papageorgiou, V. G.: Complete integrability of Lagrangian mappings and lattices of KdV type,Phys. Lett. 155A (1991), 377–387.

    Google Scholar 

  37. Belokolos, E. D., Bobenko, A. I., Enolskii, V. Z., Its, A. R., and Matveev, V. B.:Algebro-Geometric Approach to Nonlinear Evolution Equations, Springer-Verlag, 1994.

  38. Nijhoff, F. W., Papageorgiou, V. G., and Capel, H. W.: Integrable time-discrete systems: lattices and mappings, in P. P. Kulish (ed.),Quantum Groups, LNM, Vol. 1510, Springer, 1992, pp. 312–325.

  39. Nijhoff, F. W., Capel, H. W., and Papageorgiou, V. G.: Integrable quantum mappings,Phys. Rev. A46 (1992), 2155–2158.

    Google Scholar 

  40. Quispel, G. R. W. and Nijhoff, F. W.: Integrable two-dimensional quantum mappings,Phys. Lett. 161A (1991), 419–422.

    Google Scholar 

  41. Nijhoff, F. W. and Capel, H. W.: Integrable quantum mappings and non-ultralocal Yang-Baxter structures,Phys. Lett. A163 (1992), 49–56.

    Google Scholar 

  42. Nijhoff, F. W. and Capel, H. W.: Integrability and fusion algebra for quantum mappings,J. Phys. A26 (1993), 6385–6407.

    Google Scholar 

  43. Nijhoff, F. W. and Capel, H. W.: Integrable quantum mappings and quantization aspects of discrete-time integrable systems, in P. A. Clarkson (ed.),Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series C, Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, pp. 163–182.

    Google Scholar 

  44. Nijhoff, F. W. and Capel, H. W.: Quantization of integrable mappings,Springer Lect. Notes Phys. 424 (1993), 187–211.

    Google Scholar 

  45. Faddeev, L. D. and Volkov, A. Yu.: Quantum inverse scattering method on a space-time lattice,Theor. Math. Phys. 92 (1992), 837–842.

    Google Scholar 

  46. Quispel, G. R. W., Roberts, J. A. G., and Thompson, C. J.: Integrable mappings and soliton equations,Phys. Lett. A126 (1988), 419–421;ibid. II, Physica D34 (1989), 183–192.

    Google Scholar 

  47. Veselov, A. P.: Integrable maps,Russ. Math. Surv. 46(5) (1991), 1–51.

    Google Scholar 

  48. Bruschi, M., Ragnisco, O., Santini, P. M., and Tu, G.-Z.: Integrable symplectic maps,Physica 49D (1991), 273–294.

    Google Scholar 

  49. Veselov, A. P.: Growth and integrability in the dynamics of maps,Comm. Math. Phys. 145 (1992), 181–193.

    Google Scholar 

  50. Veselov, A. P.: Integrable Lagrangian correspondences and the factorization of matrix polynomials,Funct. Anal. Appl. 25 (1991), 112–122;

    Google Scholar 

  51. Deift, P. A., Li, L. C., and Tomei, C.: Matrix factorizations and integrable systems,Comm. Pure Appl. Math. 42 (1989), 443–521;

    Google Scholar 

  52. Moser, J. and Veselov, A. P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials,Comm. Math. Phys. 139 (1991), 217–243.

    Google Scholar 

  53. Suns, Yu. B.: Integrable mappings of the standard type,Funct. Anal. Appl. 23 (1989), 74–79; Generalized Toda lattices in discrete time,Leningrad Math. J. 2 (1991), 339–352.

    Google Scholar 

  54. Ablowitz, M. J. and Segur, H.:Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Google Scholar 

  55. Its, A. R. and Novokshenov, V. Y.:The Isomonodromic Deformation Theory in the Theory of Painlevé Equations, Lect. Notes Math., Vol. 1191, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  56. Ablowitz, M. J. and Clarkson, P. A.:Solitons, Nonlinear Evolution Equations and Inverse Scattering, LMS Lect. Notes, Vol. 149, Cambridge University Press, 1991.

  57. Painlevé, P.: Memoire sur les équations différentielles dont l'intégrale générale est uniforme,Bull. Soc. Math. France 28 (1900), 201–261; Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme,Acta Math. 25 (1902), 1–85.

    Google Scholar 

  58. Gambier, B.: Sur les équations différentielles du second ordre et du premier degré 'dont l'intégrale générale est à points critiques fixés,Acta Math. 33 (1909), 1–55.

    Google Scholar 

  59. Ince, E. L.:Ordinary Differential Equations, Dover Publ., New York, 1956.

    Google Scholar 

  60. Grammaticos, B. and Ramani, A.: Discrete Painlevé equations: Derivation and properties, in P. A. Clarkson (ed.),Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series C, Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, pp. 299–314.

    Google Scholar 

  61. Nijhoff, F. W. and Papageorgiou, V. G.: Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation,Phys. Lett. 153A (1991), 337–344.

    Google Scholar 

  62. Fokas, A. S., Its, A. R., and Kitaev, A. V.: Discrete Painlevé equations and their appearance in quantum gravity,Comm. Math. Phys. 142 (1991), 313–344.

    Google Scholar 

  63. Ramani, A., Grammaticos, B., and Hietarinta, J.: Discrete versions of the Painlevé equations,Phys. Rev. Lett. 67 (1991), 1829–1832.

    Google Scholar 

  64. Papageorgiou, V. G., Nijhoff, F. W., Grammaticos, B., and Ramani, A.: Isomonodromic deformation problems for discrete analogues of Painlevé equations,Phys. Lett. A164 (1992), 57–64.

    Google Scholar 

  65. Nijhoff, F. W.: On aq-deformation of the discrete Painlevé I equation andq-orthogonal polynomials,Lett. Math. Phys. 30 (1994), 327–336.

    Google Scholar 

  66. Gross, D. J. and Migdal, A. A.: Non-perturbative two-dimensional quantum gravity,Phys. Rev. Lett. 64 (1990), 127;Nucl. Phys. B340 (1990), 333.

    Google Scholar 

  67. Alvarez, O. and Windey, P.: Universality in two-dimensional quantum gravity,Nucl. Phys. B348 (1991), 490.

    Google Scholar 

  68. Papageorgiou, V. G., Grammaticos, B., and Ramani, A.: Integrable lattices and convergence acceleration algorithms,Phys. Lett. 179A (1993), 111–115.

    Google Scholar 

  69. Brezinski, C.:Accélération de la Convergence en Analyse Numérique, Lecture Notes in Mathematics, Vol. 584, Springer, 1970.

  70. Papageorgiou, V. G., Grammaticos, B., and Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial-value-boundary problems of the QD-algorithm, to appear inLett. Math. Phys.

  71. Brezinski, C.:Padé-Type Approximation and General Orthogonal Polynomials, ISNM, Vol. 50, Birkhäuser Verlag, 1980.

  72. Gragg, W. B.: The Padé table and its relation to certain algorithms of numerical analysis,SIAM Rev. 14 (1972), 1–62.

    Google Scholar 

  73. Fokas, A. S. and Ablowitz, M. J.: Linearization of the Korteweg-de Vries and painlevé II equations,Phys. Rev. Lett. 47 (1981), 1096–1100.

    Google Scholar 

  74. Nijhoff, F. W., Quispel, G. R. W., van der Linden, J., and Capel, H. W.: On some linear integral equations generating solutions of nonlinear partial differential equations,Physica 119A (1983), 101–142.

    Google Scholar 

  75. Nijhoff, F. W.: Linear integral transformations and hierarchies of integrable nonlinear evolution equations,Physica D31 (1988), 339–388.

    Google Scholar 

  76. Santini, P. M., Fokas, A. S., and Ablowitz, M. J.: The direct linearization of a class of nonlinear evolution equations,J. Math. Phys. 25 (1984), 2614–2619.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijhoff, F., Capel, H. The discrete Korteweg-de Vries equation. Acta Appl Math 39, 133–158 (1995). https://doi.org/10.1007/BF00994631

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994631

Mathematics subject classification (1991)

Key words

Navigation