Skip to main content
Log in

Thiobarbituric acid-reactive material content and enzymatic protection against peroxidative damage during the course of cryogenic rabbit brain edema

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The relationship between free radicals reactions and the cell detoxifying system was investigated during the development of brain edema following a cryogenic lesion in the rabbit cerebral cortex. The amount of TBA-reactive material present six hours after freezing was less than in the controls, then increased at 48 and 96 hours. The activity of superoxide dismutase (SOD) decreased 6 hours post-injury; at the same time, we observed a stimulation of catalase activity. The glutathione peroxidase activity (GSH-Px) rose 96 hours post-lesion. The decrease of TBA-reactive products could result from an elimination rate that exceeds generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aebi, H. 1984. Catalase. Pages 673–684,in Bergmeyer, H. U., (ed.), Methods of Enzymatic Analysis, vol. 2, Academic Press, New York and London.

    Google Scholar 

  2. Ando, Y., Inoue, M., Hirota, M., Morino, Y., and Araki, S. 1989. Effect of superoxide dismutase derivative on cold-induced brain edema. Brain Res. 477:286–291.

    PubMed  Google Scholar 

  3. Arrigoni, E., Avéret, N., and Cohandon, F. 1987. Effects of CDP-choline on phospholipase A2 and cholinephosphotransferase activities following a cryogenic brain injury in the rabbit. Biochem. Pharmacol. 36:3697–3700.

    PubMed  Google Scholar 

  4. Au, A. M., Chan, P. H., and Fishman, R. A. 1985. Stimulation of Phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries. J. Cell. Biochem. 27:449–453.

    PubMed  Google Scholar 

  5. Bazan, N. G., Politi, E., and Rodriguez de Turco, E. B. 1984. Endogenous pools of arachidonic acid-enriched lipids in cryogenic brain edema. Pages 203–212,in Go, K. G., and Baethmann, (eds.), Rexent Progress in the Study and Therapy of Brain Edema, Plenum Press, New York.

    Google Scholar 

  6. Chan, P. H., and Fishman, R. A. 1980. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J. Neurochem. 35:1004–1007.

    PubMed  Google Scholar 

  7. Chan, P. H., Longar, S., and Fishman, R. A. 1983. Phospholipid degradation and edema development in cold-injured rat brain. Brain Res. 227:329–337.

    Google Scholar 

  8. Chan, P. H., Longar, S., and Fishman, R. A. 1987. Protective effects of liposome-entrapped superoxide dismutase on postraumatic brain edema. Ann. Neurol. 21:540–547.

    PubMed  Google Scholar 

  9. Chan, P. H., Yurko, M., and Fishman, R. A. 1982. Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38:525–531.

    PubMed  Google Scholar 

  10. Chio, K. S., and Tappel, A. L. 1969. Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry 8:2821–2827.

    PubMed  Google Scholar 

  11. Clasen, R. A., Brown, D. V. L., Leavitt, S., and Hass, G. M. 1953. The production of liquid nitrogen of acute closed cerebral lesions. Surg. Gynecol. Obstet. 96:605–616.

    PubMed  Google Scholar 

  12. Cutler, R. W. P., Walters, G. V., and Barlow, C. F. 1964. I125 labelled protein in experimental brain edema. Arch. Neurol. Paris 11:225–238.

    Google Scholar 

  13. Dahle, L. K., Hill, E. G., and Holman, R. T. 1962. The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch. Biochem. Biophys. 98:253–261.

    PubMed  Google Scholar 

  14. Dean, R. T., and Cheeseman, K. H. 1987. Vitamine E protects proteins against free radical damage in lipid environments. Biochem. Biophys. Res. Commun 148:1277–1282.

    PubMed  Google Scholar 

  15. Deby, C., and Pincemail, J. 1986. Toxicity of oxygen, free radicals and defence mechanisms. Presse Med. 15:1468–1474.

    PubMed  Google Scholar 

  16. Flohé, L., and Ötting, F. 1984. Superoxide dismutase assays. Methods Enzymol. 105:93–104.

    PubMed  Google Scholar 

  17. Germansky, M., and Jamall, I. S. 1988. Organ-specific effects of naphthalene on tissue peroxidation, glutathione peroxidases and superoxide dismutase in the rat. Arch. Toxicol. 61:480–483.

    PubMed  Google Scholar 

  18. Horton, A. A., and Packer, L. 1970. Mitochondrial metabolism of aldehydes. Biochem. J. 116:19P-20P.

    Google Scholar 

  19. Janero, D. R., and Burghardt, B. 1988. Analysis of cardiac membrane phospholipid peroxidation kinetics as malondialdehyde: nonspecificity of thiobarbituric acid-reactivity. Lipids 23:452–458.

    PubMed  Google Scholar 

  20. Klatzo, I. 1967. Neuropathological aspects of brain edema. J. Neuropath. Exp. Neurol. 26:1–14.

    PubMed  Google Scholar 

  21. Knight, J. A., Pieper, R. K., and McClellan, L. 1988. Specificity of the thiobarbituric acid reaction: its use in studies of lipid peroxidation. Clin. Chem. 34:2433–2438.

    PubMed  Google Scholar 

  22. Kostka, P., and Kwan, C. Y. 1989. Instability of malondialdehyde in the presence of H2O2: implications for the thiobarbituric acid test. Lipids 24:545–549.

    Google Scholar 

  23. Lee, H. S. and Csallany, A. S. 1987. Measurement of free and bound malondialdehyde in vitamine E-deficient and supplemented rat liver tissues. Lipids 22:104–107.

    PubMed  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  25. Oberley, L. W., and Spitz, D. R. 1984. Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 105:457–464.

    PubMed  Google Scholar 

  26. Paglia, D. E., and Valentine, W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. and Clin. Med. 70:158–169.

    Google Scholar 

  27. Pappius, H. M., and Wolfe, L. S. 1983. Functional disturbances in brain following injury: search for underlying mechanisms. Neurochem. Res. 8:63–72.

    PubMed  Google Scholar 

  28. Placer, Z., Cushman, L. L., and Johnson, B. C. 1966. Estimation of product of lipid peroxidation (Malonyldialdehyde) in biochemical systems. Anal. Biochem. 16:359–364.

    PubMed  Google Scholar 

  29. Placer, Z., Veselkova, A., and Rath, R. 1965. Kinetik des malondialdehydes im organismus. Experientia 21:19–20.

    PubMed  Google Scholar 

  30. Politi, L. E., Rodriguez de Turco, E. B., and Bazan, N. G. 1985. Dexamethasone effect on free fatty acid and diacylglycerol accumulation during experimentally induced vasogenic brain edema. Neurochem. Pathol. 3:249–269.

    PubMed  Google Scholar 

  31. Rigoulet, M., Guérin, B., Cohadon, F., and Vandendriessche, M. 1979. Unilateral brain injury in the rabbit: reversible and irreversible damage of the membranal ATPases. J. Neurochem. 32:535–541.

    PubMed  Google Scholar 

  32. Seto, H., Seto, T., Takesue, T., and Ikemura, T. 1986. Reaction of malonaldehyde with nucleic acid. III. Studies of the fluorescen substances released by enzymatic digestion of nucleic acids modified with malonaldehyde. Chem. Pharm. Bull. 34:5079–5085.

    PubMed  Google Scholar 

  33. Tappel, A. L. 1954. Studies of the mechanism of vitamin E action. II. Inhibition of unsaturated fatty acid oxidation catalyzed by hematic compounds. Arch. Biochem. Biophys. 50:473–485.

    PubMed  Google Scholar 

  34. Tappel, A. L. 1972. Vitamin E and free radical peroxidation of lipids. Ann. N. Y. Acad. Sci. 203:12–28.

    PubMed  Google Scholar 

  35. Tappel, A. L. 1972. Protection against free radical lipid peroxidation reactions. Adv. Exp. Med. Biol. 97:111–131.

    Google Scholar 

  36. Van Kuijk, F. J. G. M., Sevenian, A., Handelman, G. J., and Dratz, E. A. 1987. A new role for Phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12:31–34.

    Google Scholar 

  37. Willmore, L. J., and Rubin, J. J. 1982. Formation of malonaldehyde and focal brain edema induced by subpial injection of FeCl2 into rat isocortex. Brain Res. 246:113–119.

    PubMed  Google Scholar 

  38. Wills, E. D. 1965. Mechanism of lipid peroxide formation in tissues. Role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids. Biochim. Biophys. Acta 98:238–251.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avéret, N., Coussemacq, M. & Cohadon, F. Thiobarbituric acid-reactive material content and enzymatic protection against peroxidative damage during the course of cryogenic rabbit brain edema. Neurochem Res 15, 791–795 (1990). https://doi.org/10.1007/BF00968556

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968556

Key Words

Navigation