Skip to main content
Log in

Similarities of adenosine uptake systems in astrocytes and neurons in primary cultures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Uptake of extracellular adenosine was studied in primary cultures of astrocytes or neurons. Both cell types showed a high affinity uptake. TheK m values were not significantly different (6.5±3.75 μM in astrocytes and 6.1±1.86 μM in neurons), but the intensity of the uptake was higher in astrocytes than in neurons (V max values of 0.16±0.030 and 0.105±0.010 nmol×min−1×mg−1 protein, respectively). The temperature sensitivity was similar in the two cell types. Adenosine uptake inhibitors and benzodiazepines inhibited the adenosine uptake systems in both astrocytes and neurons with IC50 values in the high nanomolar or the micromolar range and the rank order of potency was similar in the two cell types. In both cell types the (−) isomers of two sets of benzodiazepine stereoisomers were more potent than the (+) isomers. Dixon analysis showed that dipyridamole, papaverine, hexobendine and chlordiazepoxide inhibited the adenosine uptake competitively and clonazepam noncompetitively in both cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillis, J. W., andWu, P. H. 1981. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16:187–239.

    Google Scholar 

  2. Stone, T. W. 1981. Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neurosci. 6:523–555.

    Google Scholar 

  3. Maitre, M., Ciesielski, L., Lehmann, A., Kempf, E., andMandel, P. 1974. Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochem. Pharmacol. 23:2807–2816.

    Google Scholar 

  4. Yarbrough, G. G., andMcGuffin-Clineschmidt, J. C. 1981. In vivo behavioral assessment of central nervous system purinergic receptors. Eur. J. Pharmac. 76:137–144.

    Google Scholar 

  5. Dunwiddie, T. V., andWorth, T. 1982. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J. Pharmacol. Exp. Ther. 220:70–76.

    Google Scholar 

  6. Radulovacki, M., Virus, R. M., Djuricic-Nedelson, M., andGreen, R. D. 1984. Adenosine analogs and sleep in rats. J. Pharmacol. Exp. Ther. 228:268–274.

    Google Scholar 

  7. Snyder, S. H. 1985. Adenosine as a neuromodulator. Ann. Rev. Neurosci. 8:103–124.

    Google Scholar 

  8. Stone, T. W. (ed.) 1985. Purines: Pharmacology and Physiological Roles, MacMillan Press, London.

    Google Scholar 

  9. Wu, P. H., andPhillis, J. W. 1984. Uptake by central nervous tissues as a mechanism for the regulation of extracellular adenosine concentrations. Neurochem. Int. 6:613–632.

    Google Scholar 

  10. Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., andKirkpatrick, J. R. 1979. Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can. J. Physiol. Pharmac. 57:1289–1312.

    Google Scholar 

  11. Crawley, J. N., Patel, J., andMarangos, P. J. 1983. Adenosine uptake inhibitors potentiate the sedative effects of adenosine. Neurosci. Lett. 36:169–174.

    Google Scholar 

  12. Coffin, V. L., Taylor, J. A., Phillis, J. W., Altman, H. J., andBarraco, R. A. 1984. Behavioral interaction of adenosine and methylxanthines on central purinergic systems. Neurosci. Lett. 47:91–98.

    Google Scholar 

  13. Huang, M., andDaly, J. W. 1974. Adenosine-elicited accumulation of cyclic AMP in brain slices: Potentiation by agents which inhibit uptake of adenosine. Life Sci. 14:489–503.

    Google Scholar 

  14. Nimit, Y., Skolnick, P., andDaly, J. W. 1981. Adenosine and cyclic AMP in rat cerebral cortical slices: effects of adenosine uptake inhibitors and adenosine deaminase inhibitors. J. Neurochem. 36:908–912.

    Google Scholar 

  15. Davies, L. P., Baird-Lambert, J., andJamieson, D. D. 1982. Potentiation of pharmacological responses to adenosine, in vitro and in vivo. Gen. Pharmac. 13:27–33.

    Google Scholar 

  16. Santos, J. N., Hempstead, K. N., Koppe, L. E., andMiech, R. P. 1968. Nucleotide metabolism in rat brain. J. Neurochem. 15:367–376.

    Google Scholar 

  17. Shimizu, H., Tanaka, S., andKodama, T. 1972. Adenosine kinase of mammalian brain: partial purification and its role for the uptake of adenosine. J. Neurochem. 19:687–698.

    Google Scholar 

  18. Banay-Schwartz, M., de Guzman, T., andLajtha, A. 1980. Nucleoside uptake by slices of mouse brain. J. Neurochem. 35:544–551.

    Google Scholar 

  19. Davies, L. P., andHambley, J. W. 1986. Regional distribution of adenosine uptake in guinea pig brain slices and the effect of some inhibitors: evidence for nitrobenzylthioinosine-sensitive and insensitive sites? Neurochem. Int. 8:103–108.

    Google Scholar 

  20. Kuroda, Y., andMcIlwain, H. 1974. Uptake and release of [14C]adenine derivatives at beds of mammalian cortical synaptosomes in superfusion system. J. Neurochem. 22:691–700.

    Google Scholar 

  21. Bender, A. S., Wu, P. H., andPhillis, J. W. 1980. The characterization of [3H]adenosine uptake into rat cerebral cortical synaptosomes. J. Neurochem. 35:629–640.

    Google Scholar 

  22. Bender, A. S., Wu, P. H., andPhillis, J. W. 1981. The rapid uptake and release of [3H]adenosine by rat cerebral cortical synaptosomes. J. Neurochem. 36:651–660.

    Google Scholar 

  23. Bender, A. S., Wu, P. H., andPhillis, J. W. 1981. Some biochemical properties of the rapid adenosine uptake system in rat brain synaptosomes. J. Neurochem. 37:1282–1290.

    Google Scholar 

  24. Barberis, C., Minn, A., andGayet, J. 1981. Adenosine transport into guinea-pig synaptosomes. J. Neurochem. 36:347–354.

    Google Scholar 

  25. Gonzales, R. A., andLeslie, S. W. 1985. [3H]Adenosine uptake and release from synaptosomes. Biochem. Pharmac. 34:1619–1625.

    Google Scholar 

  26. Thampy, K. G., andBarnes, Jr. E. M. 1983. Adenosine transport by primary cultures of neurons from chick embryo brain. J. Neurochem. 40:874–879.

    Google Scholar 

  27. Schultz, J., Hamprecht, B., andDaly, J. W. 1972. Accumulation of adenosine 3′,5′-cyclic monophosphate in clonal glial cells: labeling of intracellular adenine nucleotides with radioactive adenine. Proc. Natn. Acad. Sci. U.S.A. 69:1266–1270.

    Google Scholar 

  28. Clark, R. B., Su, Y. F., Gross, R., andPerkins, J. P. 1974. Regulation of adenosine 3′,5′-monophosphate content in human astrocytoma cells by adenosine and the adenine nucleotides. J. Biol. Chem. 249:5296–5303.

    Google Scholar 

  29. Lewin, B., andBleck, V. 1979. Uptake and release of adenosine by cultured astrocytoma cells. J. Neurochem. 33:365–367.

    Google Scholar 

  30. Hertz, L. 1978. Kinetics of adenosine uptake into astrocytes. J. Neurochem. 31:55–62.

    Google Scholar 

  31. Thampy, K. G., andBarnes Jr. E. M. 1983. Adenosine transport by cultured glial cells from chick embryo brain. Arch. Biochem. Biophys. 220:340–346.

    Google Scholar 

  32. Paterson, A. R. P. 1979. Adenosine transport. Pages 305–313,in Baer, H. P., andDrummond, G. I. (eds.), Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, Raven Press, New York.

    Google Scholar 

  33. Plagemann, P. G. W., andWohlhueter, R. M. 1983. Nucleoside transport in mammalian cells and interaction with intracellular metabolism. Pages 179–201,in Berne, R. M., Rall, T. W., andRubio, R. (eds.), Regulatory Function of Adenosine, Martinus Nijhoff Publishers, Boston.

    Google Scholar 

  34. Miras-Portugal, M. T., Torres, M., Rotllan, P., andAunis, D. 1986. Adenosine transport in bovine chromaffin cells in cultures. J. Biol. Chem. 261:1712–1719.

    Google Scholar 

  35. Schousboe, A., Larsson, O. M., Drejer, J., Krogsgaard-Larsen, P., andHertz, L. 1983. Uptake and release processes for glutamine, glutamate and GABA in cultured neurons and astrocytes. Pages 297–315,in Hertz, L., Kvamme, E., McGeer, E. G., andSchousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, New York.

    Google Scholar 

  36. Booher, J., andSensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiol. 2:97–105.

    Google Scholar 

  37. Hertz, L., Juurlink, B. H. J., Fosmark, H., andSchousboe, A. 1982. Methodological appendix: astrocytes in primary cultures. Pages 175–186,in Pfeiffer, S., (ed.), Neuroscience Approached Through Cell Culture Vol. 1, CRC Press, Boca Raton, FL.

    Google Scholar 

  38. Hertz, L., Juurlink, B. H. J., Szuchet, S. 1985. Cell cultures. Pages 603–661,in Lajtha, A. (ed.) Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  39. Hertz, L., Juurlink, B. H. J., Szuchet, S., andWalz, W. 1986. Cell and tissue culture. Pages 117–167,in Boulton, A. A., andBaker, G. B. (eds.), Neuromethods, Vol. 1 Humana Press, Clifton, N.J.

    Google Scholar 

  40. Yavin, E., andYavin, Z. 1974. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J. Cell. Biol. 62:540–546.

    Google Scholar 

  41. Sensenbrenner, M. 1977. Dissociated brain cells in primary cultures. Pages 191–213,in Fedoroff, S., Hertz, L. (eds.), Tissue and Organ Cultures in Neurobiology, Academic Press, New York.

    Google Scholar 

  42. Yu, A. C. H., Hertz, E., andHertz, L. 1984. Alteractions in uptake and release rates for GABA, glutamate and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation. J. Neurochem. 42:951–960.

    Google Scholar 

  43. Zetterstrom, T., Vernet, L., Ungerstedt, U., Tossman, U., Jonzon, B., andFredholm, B. B. 1982. Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci. Lett. 29:111–115.

    Google Scholar 

  44. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  45. Hertz, L., Schousboe, A., Boechler, N., Mukerji, S., andFedoroff, S. 1978. Kinetic characteristics of the glutamate uptake into normal astrocytes in culture. Neurochem. Res. 3:1–14.

    Google Scholar 

  46. Hertz, L. 1968. Potassium effects on ion transport in brain slices. J. Neurochem. 15:1–16.

    Google Scholar 

  47. Schousboe, A., Fosmark, H., andHertz, L. 1975. High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: effect of serum withdrawal and of cyclic AMP. J. Neurochem. 25:909–911.

    Google Scholar 

  48. Walz, W., andHinks, E. C. 1985. Carrier-mediated KCl accumulation accompanied by water movements is involved in the control of physiological K+ levels by astrocytes. Brain Res. 343:44–51.

    Google Scholar 

  49. Goodnight, J. H., andSall, J. P. 1982. The NLIN procedure. Pages 15–38,in Ray, A. A. (ed.), SAS User's Guide: Statistics, SAS Institute, Cary, North Carolina.

    Google Scholar 

  50. Delong, D. M., andGoodnight, J. H. 1982. The probit procedure. Pages 287–292,in Ray, A. A. (ed.), SAS User's Guide: Statistics, SAS Institute, Cary, North Carolina.

    Google Scholar 

  51. Dixon, M. 1953. The determination of enzyme inhibitor constants. Biochem. J. 55:170–171.

    Google Scholar 

  52. Cheng, Y. C., andPrusoff, W. H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibition which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmac. 22:3099–3108.

    Google Scholar 

  53. Schubert, P., andKreutzberg, G. W. 1976. Communication between the neurons and the vessels. Pages 207–213,in Cervos-Navarro, J., Betz, E., Matakas, F., andWüllenweber, R. (eds.), The Cerebral Vessel Wall, Raven Press, New York.

    Google Scholar 

  54. Ehinger, B., andPerez, M. T. R. 1984. Autoradiography of nucleoside uptake into the retina. Neurochem. Int. 6:369–381.

    Google Scholar 

  55. Schousboe, A., Hertz, L., andSvenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2:217–229.

    Google Scholar 

  56. Phillis, J. W., andWu, P. H. 1983. Nitrobenzylthioinosine inhibition of adenosine uptake in guinea-pig brain. J. Pharm. Pharmacol. 35:540.

    Google Scholar 

  57. Cavalla, D., andNeff, N. H. 1985. 2-Azidoadenosine — a photoaffinity label for the CNS adenosine transporter. Trans. Amer. Soc. Neurochem. 16:173.

    Google Scholar 

  58. Mah, H. D., andDaly, J. W. 1976. Adenosine-dependent formation of cyclic AMP in brain slices. Pharmac. Res. Commun. 8:65–79.

    Google Scholar 

  59. York, M. J., andDavies, L. P. 1982. The effect of diazepam on adenosine uptake and adenosine-stimulated adenylate cyclase in guinea-pig brain. Can. J. Physiol. Pharmacol. 60:302–307.

    Google Scholar 

  60. Phillis, J. W., Bender, A. S., andWu, P. H. 1980. Benzodiazepines inhibit adenosine uptake into rat brain synaptosomes. Brain Res. 195:494–498.

    Google Scholar 

  61. Verma, A., Houston, M., andMarangos, P. J. 1985. Solubilization of an adenosine uptake site in brain. J. Neurochem. 45:596–603.

    Google Scholar 

  62. Davies, L. P., andHambley, J. W. 1983. Diazepam inhibition of adenosine uptake in the CNS: lack of effect on adenosine kinase. Gen. Pharmac. 14:307–309.

    Google Scholar 

  63. Booker, H. E., andCelesia, G. G. 1973. Serum concentrations of diazepam in subjects with epilepsy. Arch. Neurol. 29:191–194.

    Google Scholar 

  64. Garattini, S., Mussini, E., Marcucci, F., andGuaitairi, A. 1973. Metabolic studies on benzodiazepines in various animals species. Pages 75–96,in Garattini, S., Mussini, E., Randall, L. O. (eds.), The Benzodiazepines, Raven Press, New York.

    Google Scholar 

  65. Greenblatt, D. J., Woo, E., Allen, M. D., Orsulak, P. J., andShader, R. I. 1978. Rapid recovery from massive diazepam overdose. JAMA 240:1872–1874.

    Google Scholar 

  66. Hillestad, L., Hansen, T., Melsom, H., andDrivenes, A. 1974. Diazepam metabolism in normal man. 1. Serum concentrations and clinical effects after intravenous, intramuscular, and oral administration. Clin., Pharmac. Ther. 16:479–484.

    Google Scholar 

  67. Phillis, J. W. 1984. Adenosine's role in the central actions of the benzodiazepines. Prog. Neuro-Psychopharmac. Biol. Psychiat. 8:495–502.

    Google Scholar 

  68. Bender, A. S., andHertz, L. 1985. Drug effects on diazepam binding and adenosine uptake in astrocytes. Trans. Amer. Soc. Neurochem. 16:219.

    Google Scholar 

  69. Bender, A. S., Hertz, E., andHertz, L. 1985. Drug effects on diazepam binding and adenosine uptake in cultured neurons. J. Neurochem. 44:S88C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, A.S., Hertz, L. Similarities of adenosine uptake systems in astrocytes and neurons in primary cultures. Neurochem Res 11, 1507–1524 (1986). https://doi.org/10.1007/BF00965770

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965770

Keywords

Navigation