Skip to main content
Log in

The Advanced Architecture On-board Processor signal processing testbed

  • Published:
Journal of VLSI Signal Processing Aims and scope Submit manuscript

Abstract

The Advanced Architecture On-board Processor (AAOP) is a fault-tolerant signal processor developed for advanced space and avionics missions. A ten processor element breadboard, funded by Rome Air Development Center, has been constructed to prove the architecture concept and to provide a testbed for applications development. In addition, the testbed has allowed the development of fault tolerance approaches that are compatible with the signal processing missions. Work is on-going to apply the AAOP to evolving space missions and to reduce the AAOP to a VLSI implementation capable of space qualification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.W. Doty, “New Designs for Dense Interconnection Networks”,IEEE Trans. Comp., vol. c-33, 1984, pp. 447–450.

    Article  Google Scholar 

  2. B.W. Arden and H. Lee, “Analysis of Chordal Ring Network”,IEEE Trans. Comp., vol. c-30, 1981, pp. 291–295.

    Article  MathSciNet  Google Scholar 

  3. M.J. Iacoponi, D.K. Vail, “The Fault Tolerance Approach of the Advanced Architecture On-board Processor”,19th International Symposium on Fault Tolerant Computing, 1989, pp. 6–12.

  4. S.H. Hosseini, J.G. Kuhl and S.M. Reddy, “A diagnosis algorithm for distributed computing with dynamic failure and repair”,IEEE Trans. Comp., vol. c-33, 1984, pp. 223–233.

    Article  MATH  Google Scholar 

  5. D.K. Pradhan and S.M. Reddy, “A fault-tolerant communication architecture for distributed systems”,IEEE Trans. Comp., vol. c-31, 1982, pp. 863–870.

    Article  MATH  Google Scholar 

  6. M.J. Iacoponi, “A Vector RISC Signal Processing Element with Concurrent Fault Detection”,Government Microcircuit Applications Conference, 1989.

  7. A. Avizienis and J. Laprie, “Dependable computing: from concepts to design diversity”,Proc. IEEE, vol. 74, 1986, pp. 629–638.

    Article  Google Scholar 

  8. D. Lala,Fault tolerant and fault testable hardware design, Englewood Cliffs, NJ: Prentice Hall, 1985, pp. 12–24.

    Google Scholar 

  9. J.A. Abraham and W.K. Fuchs, “Fault and error models for VLSI”,Proc. IEEE, vol. 74, 1986, pp. 639–654.

    Article  Google Scholar 

  10. C. Timoc, M. Buehler, T. Griswold, C. Pina, F. Scott and L. Hess, “Logical models of physical failures”,Proc. Int. Test Conf., 1983, pp. 546–553.

  11. Wong, K.L., Quart, I., Kallis, J.M. Burkhard, A.H., “Culprits Causing Avionic Equipment Failures”,Proc. Reliability and Maintainability Symposium, 1987, pp. 416–421.

  12. M.A. Breuer, “Testing for intermittent faults in digital circuits”,IEEE Trans. Comp., vol. c-22, 1973, pp. 241–246.

    Article  Google Scholar 

  13. O. Tasar and V. Tasar, “A study of intermittent faults in digital computers”,Proc. of AFIPS Conf., 1977, pp. 807–811.

  14. O'Neill, E.J. and Halverson, J.R., “Study of Intermittent Field Hardware Failure Data in Digital Electronics”, NASA Contractor Report 159268, 1980.

  15. S.Y.H. Su, I. Koren and Y.K. Malaiya, “A continuous parameter Markov model and detection procedure for intermittent faults”,IEEE Trans. Comp., vol. c-27, 1978, pp. 567–570.

    Article  MATH  Google Scholar 

  16. E.L. Peterson, “Radiation induced soft fails in space electronics”,IEEE Trans. Nuclear Sci., vol. NS-30, 1983, pp. 1638–1641.

    Article  Google Scholar 

  17. Adams J.H. Jr. and Gelman, A. “The Effects of Solar Flares on Single Event Upset Rates”,IEEE Trans. on Nuclear Sci., vol. NS-31, 1984, pp. 1212–1216.

    Article  Google Scholar 

  18. Adams, J.H. Jr., “The Variability of Single Event Upset Rates in the Natural Environment”,IEEE Trans. on Nuclear Sci., vol. NS-30, 1983, pp. 4475–4480.

    Article  Google Scholar 

  19. Adams, J.H. Jr., Silberberg, R. and Tsao, C.H., “Cosmic Ray Effects on Microelectronics”,IEEE Trans. on Nuclear Sci., vol. NS-29, 1982, pp. 169–172.

    Article  Google Scholar 

  20. Petersen, E.L. and Langworthy, J.B., “Suggested Single Event Upset Figure of Merit“,IEEE Trans. on Nuclear Sci., vol. NS-30, 1983, pp. 4533–4539.

    Article  Google Scholar 

  21. Blake, J.B. and Mandel, R., “On-Orbit Observations of Single Event Upset in Harris HM-6508 1k RAMs”,IEEE Trans. on Nuclear Sci., vol. NS-33, 1986, pp. 1616–1619.

    Article  Google Scholar 

  22. J.B. White, Jr., “Fault Tolerant Memory System Architecture for Radiation Induced Errors”,IEEE Trans. Aerospace and Electronic Systems, vol. AES-18, 1982.

  23. M.J. Iacoponi, “Optimal Control of Latent Fault Accumulation”,19th International Symposium on Fault Tolerant Computing, 1989, pp. 382–388.

  24. J. Wakerly,Error detecting codes, self-checking circuits and applications, New York: North-Holland, 1978.

    Google Scholar 

  25. D.K. Pradhan, J.J. Stiffler, “Error-correcting codes and selfchecking circuits”,Computer, 1980, pp. 27–37.

  26. D.K. Pradhan, Ed.,Fault Tolerant Computing, Theory and Techniques, Vol. I and II, Englewood Cliffs, NJ: Prentice-Hall, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacoponi, M.J. The Advanced Architecture On-board Processor signal processing testbed. J VLSI Sign Process Syst Sign Image Video Technol 2, 89–101 (1990). https://doi.org/10.1007/BF00934999

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00934999

Keywords

Navigation