Skip to main content
Log in

Moleküldynamik und Coriolis-Kopplungskoeffizienten einiger Hexafluoride oktaedrischer Symmetrie

Molecular dynamics and coriolis coupling coefficients in some hexafluorides of octahedral symmetry

  • Anorganische, Struktur- und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The hexafluorides of sulfur, selenium, tellurium, molybdenum, technetium, ruthenium, rhodium, tungsten, rhenium, osmium, iridium, platinum, uranium, neptunium, and plutonium possessing an octaedral symmetry with the symmetry point group Oh have been briefly analyzed for the molecular structural data and the infrared absorption andRaman spectra. On the basis of group theoretical considerations, potential energy constants have been evaluated by employing a general harmonic force field. The L matrix elements connecting the internal coordinates and normal coordinates have been derived from the symmetrized force constants, G matrix elements, and vibrational frequencies. The Coriolis coupling coefficients of vibration-rotation have also been, in terms of the symmetrized force constants, G matrix elements, and vibrational frequencies, computed for these fifteen hexafluorides, and compared with the available values of experimental investigations. A brief discussion of the results follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. V. C. Ewing undL. E. Sutton, Trans. Faraday Soc.59, 1241 (1963).

    Google Scholar 

  2. H. M. Seip undR. Stølevik, Acta Chem. Scand.20, 1535 (1966).

    Google Scholar 

  3. H. M. Seip undR. Seip, Acta Chem. Scand.20, 2698 (1966).

    Google Scholar 

  4. L. O. Brockway undL. Pauling, Proc. Natl. Acad. Sci. [USA]19, 68 (1933).

    Google Scholar 

  5. H. Braune undP. Pinnow, Z. Physik. Chim.B 35, 239 (1937).

    Google Scholar 

  6. R. V. G. Evans undM. W. Lister, Trans. Faraday Soc.34, 1358 (1938).

    Google Scholar 

  7. P. W. Allen undL. E. Sutton, Acta Cryst.3, 46 (1950).

    Google Scholar 

  8. S. H. Bauer, J. Chem. Phys.18, 27, 994 (1950).

    Google Scholar 

  9. H. M. Seip, Acta Chem. Scand.19, 1955 (1965).

    Google Scholar 

  10. V. Schomaker, M. Kimura undB. Weinstock, Preliminary results quoted in P/942 of the second U. N. International Conference on the peaceful uses of Atomic Energy, September 1958.

  11. H. M. Seip, Selected Topics in Structural Chemistry (Ed.P. Anderson, O. Bastiansen undS. Furberg), S. 25. Oslo: Universitetsforlaget. 1967.

    Google Scholar 

  12. R. M. Badger, J. Chem. Phys.2, 128 (1934);3, 710 (1935).

    Google Scholar 

  13. G. Nagarajan, Indian J. pure appl. Phys.1, 232 (1963).

    Google Scholar 

  14. G. Nagarajan, Indian J. pure appl. Phys.2, 86 (1964).

    Google Scholar 

  15. H. H. Claassen, J. Chem. Phys.30, 968 (1959).

    Google Scholar 

  16. B. Weinstock, H. H. Claassen undJ. G. Malm, J. Chem. Phys.32, 181 (1960).

    Google Scholar 

  17. H. C. Mattraw, N. J. Hawkins, D. R. Carpenter undW. W. Sabol, J. Chem. Phys.23, 985 (1955).

    Google Scholar 

  18. H. H. Claassen, B. Weinstock undJ. G. Malm, J. Chem. Phys.25, 426 (1956).

    Google Scholar 

  19. T. G. Burke, D. F. Smith undA. H. Nielsen, J. Chem. Phys.20, 447 (1952).

    Google Scholar 

  20. J. G. Malm, B. Weinstock undH. H. Claassen, J. Chem. Phys.23, 2192 (1955).

    Google Scholar 

  21. J. Gaunt, Trans. Faraday Soc.49, 1122 (1953).

    Google Scholar 

  22. J. Gaunt, Trans. Faraday Soc.51, 893 (1955).

    Google Scholar 

  23. K. W. F. Kohlrausch, Raman Spektren. Leipzig: Akademische Verlagsgesellschaft Becker und Erler. 1943.

    Google Scholar 

  24. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules. New York: Van Nostrand. 1960.

    Google Scholar 

  25. D. F. Heath undJ. W. Linnett, Trans. Faraday Soc.45, 264 (1949).

    Google Scholar 

  26. D. M. Yost, C. C. Steffens undS. T. Gross, J. Chem. Phys.2, 311 (1934).

    Google Scholar 

  27. C. W. Gulliksen, J. R. Nielsen undA. T. Stair, Jr., J. Mol. Spectr.1, 151 (1957).

    Google Scholar 

  28. H. H. Claassen, G. L. Goodman, J. H. Holloway undH. Selig, J. Chem. Phys.35, 341 (1970).

    Google Scholar 

  29. K. N. Tanner undA. B. I. Duncan, J. Amer. Chem. Soc.73, 1164 (1951).

    Google Scholar 

  30. H. H. Claassen, H. Selig undJ. G. Malm, J. Chem. Phys.36, 2888 (1962).

    Google Scholar 

  31. H. H. Claassen undH. Selig, Israel J. Chem.7, 499 (1969).

    Google Scholar 

  32. B. Weinstock undG. Goodman, Adv. Chem. Phys.9, 169 (1965).

    Google Scholar 

  33. B. Weinstock undH. H. Claassen, J. Chem. Phys.31, 262 (1959).

    Google Scholar 

  34. J. Gaunt, Trans. Faraday Soc.50, 546 (1954).

    Google Scholar 

  35. B. Weinstock, H. H. Claassen undC. L. Chernick, J. Chem. Phys.38, 1470 (1963).

    Google Scholar 

  36. G. Nagarajan, Indian J. pure appl. Phys.2, 86 (1964).

    Google Scholar 

  37. J. Bigeleisen, M. G. Mayer, P. C. Stevenson undJ. Turkevich, J. Chem. Phys.16, 442 (1948).

    Google Scholar 

  38. B. Frlec undH. H. Claassen, J. Chem. Phys.46, 4603 (1967).

    Google Scholar 

  39. E. L. Gasner undB. Frlec, J. Chem. Phys.49, 5135 (1968).

    Google Scholar 

  40. E. B. Wilson, Jr., J. Chem. Phys.7, 1047 (1939);9, 76 (1941).

    Google Scholar 

  41. O. Redlich, Kurz undRosenfeld, Z. Physik. Chim.B 19, 231 (1932).

    Google Scholar 

  42. A. Eucken undF. Sauter, Z. Physik. Chim.B 26, 463 (1934).

    Google Scholar 

  43. K. Venkateswarlu undS. Sundaram, Z. Physik. Chem. [N. F.]9, 174 (1956).

    Google Scholar 

  44. C. W. F. T. Pistorius, J. Chem. Phys.29, 1328 (1958).

    Google Scholar 

  45. H. H. Claassen, J. Chem. Phys.30, 968 (1959).

    Google Scholar 

  46. J. Duchesne undW. G. Penney, Bull. soc. roy. sci. Liège11, 514 (1939).

    Google Scholar 

  47. J. Duchesne, Mém. soc. roy. sci. Liège1943, 429 (1943).

    Google Scholar 

  48. J. Duchesne undA. Monfils, J. Chem. Phys.17, 586 (1949).

    Google Scholar 

  49. J. Duchesne, Acad. roy. Belg. classe sci. Mém.26, 1 (1952);28, 1 (1955).

    Google Scholar 

  50. P. Torkington, J. Chem. Phys.21, 83 (1953).

    Google Scholar 

  51. C. A. Coulson undJ. Duchesne, Bull. classe sci. Acad. roy. Belg.43, 522 (1957).

    Google Scholar 

  52. T. Wentink, Jr., Doctoral Thesis, Cornell University, Ithaca, New York (1954).

  53. C. A. Coulson, J. Duchesne undC. Manneback, V. Henri Mém. Volume, S. 33. Liège: Dosoer. 1948.

    Google Scholar 

  54. W. J. Orville Thomas, Trans. Faraday Soc.49, 855 (1953).

    Google Scholar 

  55. L. Burnelle undJ. Duchesne, J. Chem. Phys.28, 726 (1958).

    Google Scholar 

  56. S. Abramowitz undI. W. Levin, J. Chem. Phys.44, 3353 (1966).

    Google Scholar 

  57. D. M. Dennison, Rev. Mod. Phys.12, 175 (1940).

    Google Scholar 

  58. H. H. Nielsen, Rev. Mod. Phys.23, 90 (1951).

    Google Scholar 

  59. R. C. Lord undR. E. Merrifield, J. Chem. Phys.20, 1348 (1952).

    Google Scholar 

  60. D. R. J. Boyd undH. C. Longuet-Higgins, Proc. Roy. Soc.A 231, 55 (1952).

    Google Scholar 

  61. J. H. Meal undS. R. Polo, J. Chem. Phys.24, 1119, 1126 (1956).

    Google Scholar 

  62. E. Meisingseth, J. Brunvoll undS. J. Cyvin, Normal-Coordinate Analysis of Rotation-Vibration of Octahedral XY6 and Z6 Molecular Models with Application to 15 XY6 Molecules. I. Kommisjon Hos F. Bruns Bokhandel. Trondheim, Norway. 1964.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Diese Arbeit stellt einen Teil der Dissertation dar, die vonD. C. Brinkley zur Erlangung eines “Master of Science”-Grads an der Graduate School des Valdosta State College eingereicht wurde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, G., Brinkley, D.C. Moleküldynamik und Coriolis-Kopplungskoeffizienten einiger Hexafluoride oktaedrischer Symmetrie. Monatshefte für Chemie 104, 1183–1202 (1973). https://doi.org/10.1007/BF00910032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00910032

Navigation