Skip to main content
Log in

Regionalized favorability theory for information synthesis in mineral exploration

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

This paper presents a regionalized method for the estimation of a favorability function through generalization of all relevant variables (explanatory and target) into random functions. The new method allows the use of cross-covariance functions in addition to ordinary covariances for extracting spatial joint information, which is virtually overlooked in the conventional analyses. The optimal weights for a favorability equation are derived from solving a generalized eigen-system established by the maximization of covariances between a favorability function and the principal components of a set of pre-selected target variables. Various correlation coefficients may be computed to assist in interpretation of the favorability estimates. Both favorability functions and correlation coefficients may be estimated for a point or a block. The regionalized favorability theory can be compared to cokriging in that both use the sample-sample covariances to account for the sample-sample relations and the point-sample covariances to account for the point-sample configurations. The new technique is demonstrated on a test case study, which involves the integration of geochemical, airborne-geophysical, and structural data sets for the target selection of hydrothermal gold-silver deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agterberg, F. P., 1989, Computer Programs for Mineral Exploration: Science, v. 245, p. 76–81.

    Google Scholar 

  • Agterberg, F. P., 1992, Combining Indicator Patterns in Weights of Evidence Modeling for Resource Evaluation: Nonrenewable Res., v. 1, p. 39–50.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., and Wright, D. F. 1990, Statistical Pattern Integration for Mineral Exploration,in G. Gaál and D. F., Merriam (Eds.), Computer Applications in Resource Exploration, Prediction, and Assessment for Metals and Petroleum: Pergamon, Oxford, p. 1–21.

    Google Scholar 

  • Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., and Gott, G. B., 1978, A Regionalized Multivariate Approach to Target Selection in Geochemical Exploration: Econ. Geol., v. 73, p. 534–546.

    Google Scholar 

  • Carr, J. R., and McCallister, P. G., 1985, An Application of Co-Kriging for Estimation of Tripartite Earthquake Response Spectra: Math. Geol., v. 17, p. 527–545.

    Google Scholar 

  • Carr, J. R., Myers, D. E., and Glass, C. E., 1985, Co-Kriging—A Computer Program: Comp. Geos., v. 11, p. 111–127.

    Google Scholar 

  • Chung, C. F., and Agterberg, F. P., 1980, Regression Models for Estimating Mineral Resources from Geological Map Data: Math. Geol., v. 12, p. 473–488.

    Google Scholar 

  • Clark, I., Basinger, K. L., and Harper, W. V., 1989, MUCK—A Novel Approach to Co-Kriging:in B. E. Buxton (Ed.), Proc. of the Conf. on Geostatistical, Sensitivity, and Uncertainty Methods for Ground-Water Flow and Radionuclide Transport Modeling: Battelle Press, p. 473–493.

  • David, M., 1977, Geostatistical Ore Reserve Estimation: Elsevier, New York, 364 p.

    Google Scholar 

  • Davis, B. M., and Greenes, K. A., 1983, Estimation Using Spatially Distributed Multivariate Data—An Example with Coal Quality: Math. Geol., v. 15, p. 287–300.

    Google Scholar 

  • Davis, J. C., 1986, Statistics and Data Analysis in Geology, 2nd ed.: John Wiley & Sons, New York, 646 p.

    Google Scholar 

  • Fraser, D. C., 1978, Resistivity Mapping with an Airborne Multicoil Electromagnetic System: Geophysics, v. 43, p. 144–172.

    Google Scholar 

  • Fraser, D. C., 1990, Layered-Earth Resistivity Mapping: U.S.G.S. Bull., Dec., p. 33–41.

  • Harris, D. P., 1984, Mineral Resources Appraisal: Oxford University Press, London, 445 p.

    Google Scholar 

  • Harris, D. P., and Pan, G. C., 1987, An Investigation of Quantification Methods and Multivariate Relations Designed Explicitly to Support the Estimation of Mineral Resources—Intrinsic Samples: Report on Research Sponsored by U.S. Geological Survey Grant No. 14-08-0001-G1399, 200 p.

  • Harris, D. P., and Pan, G. C., 1990, Intrinsic Sample Methodology,in G. Gaál and D. F. Merriam (Eds.), Computer Application in Resource Exploration, Prediction, and Assessment for Metals and Petroleum: Pergamon, Oxford, p. 53–74.

    Google Scholar 

  • Hohn, M. E., 1988, Geostatistics and Petroleum Geology: Van Nostrand Reinhold, New York, 264 p.

    Google Scholar 

  • Isaaks, E. H., and Srivastava, 1989, An Introduction to Applied Geostatistics: Oxford University Press, New York, 561 p.

    Google Scholar 

  • Johnson, R. A., and Wichern, D. W., 1988, Applied Multivariate Statistical Analysis: Prentice Hall, 607 p.

  • Journel, A. G., and Huijbregts, C. J., 1978, Mining Geostatistics: Academic Press, London, 600 p.

    Google Scholar 

  • Kirsch, Ch., and Pawlowsky, U., 1985, Modelisation de Variogrammes Croises: Comment Satisfaire á l'Inegalite de Cauchy-Schwartz: Sci. Terre, v. 24, p. 53.

    Google Scholar 

  • Luo, J., 1990, Statistical Mineral Prediction Without Defining a Training Area: Math. Geol., v. 22, p. 253–260.

    Google Scholar 

  • Marcotte, D., 1991, Cokriging with Matlab: Comp. Geosci., v. 17, p. 1265–1280.

    Google Scholar 

  • McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., and Bowen, R. W., 1983, Characteristic Analysis—1981: Final Program and a Possible Discovery: Math. Geol., v. 15, p. 59–83.

    Google Scholar 

  • Myers, D. E., 1982, Matrix Formulation of Co-Kriging: Math. Geol., v. 14, p. 249–257.

    Google Scholar 

  • Myers, D. E., 1983, Estimation of Linear Combinations and Co-Kriging: Math. Geol., v. 15, p. 633–637.

    Google Scholar 

  • Myers, D. E., 1984, Co-Kriging—New Development:in G. Verly et al. (Eds.), Geostatistics for Natural Resources Characterization: D. Reidel, p. 295–305.

  • Myers, D. E., 1988a, Multivariate Geostatistics for Environmental Monitoring: Sci. Terre, v. 27, p. 411–428.

    Google Scholar 

  • Myers, D. E., 1988b, Interpolation with Positive Definite Functions: Sci. Terre, v. 28, p. 251–265.

    Google Scholar 

  • Myers, D. E., 1991, Pseudocross-Variograms, Positive Definiteness and Cokriging: Math. Geol., v. 23, p. 805–816.

    Google Scholar 

  • Pan, G. C., 1989, Concepts and Methods of Multivariate Information Synthesis for Mineral Resources Estimation: Ph.D. dissertation, University of Arizona, Tucson, 302 p.

    Google Scholar 

  • Pan, G. C., and Harris, D. P., 1990, Three Nonparametric Techniques for Optimum Discretization of Quantitative Geological Measurements: Math. Geol., v. 22, p. 699–722.

    Google Scholar 

  • Pan, G. C., and Harris, D. P., 1992a, Estimating a Favorability Equation for the Integration of Geodata and Selection of Mineral Exploration Targets: Math. Geol., v. 24, p. 177–202.

    Google Scholar 

  • Pan, G. C., and Harris, D. P., 1992b, Decomposed and Weighted Characteristic Analysis for the Quantitative Estimation of Mineral Resources: Math. Geol., v. 24, p. 807–823.

    Google Scholar 

  • Pan, G. C., and Wang, Y., 1987, Weighted Characteristic Analysis and Its Application to Quantitative Estimation of Pegmatitic Nb-Ta Mineral Resources (in Chinese): Geol. Prospect., v. 23, p. 34–42.

    Google Scholar 

  • Pan, G. C., Moss, K., Heiner, T., and Carr, J. R., 1992, A FORTRAN Program for Three-Dimensional Cokriging with Case Demonstration: Comp. Geosci., v. 18, p. 557–578.

    Google Scholar 

  • Parasnis, D. S., 1986, Principles of Applied Geophysics, 4th ed.: Chapman and Hall, London, 402 p.

    Google Scholar 

  • Reddy, R. K. T., and Koch, G. S., Jr., 1988a, A Generalized Model for Evaluating Area-Potential in a Mineral Exploration Program: Math. Geol., v. 20, p. 227–241.

    Google Scholar 

  • Reddy, R. K. T., and Koch, G. S., Jr., 1988b, A Case Study of Silver Exploration in Parts of Idaho and Montana Using Mathematical Modeling Techniques: Econ. Geol., v. 83, p. 1008–1014.

    Google Scholar 

  • Seber, G. A. F., 1984, Multivariate Observations: John Wiley & Sons, New York, 686 p.

    Google Scholar 

  • Unal, A., and Haycocks, C., 1986, Geostatistical Coal Resource Characterization Using Intervariable Correlations,in Proc. 19th APCOM Symposium, Penn. State Univ., April, SME-AIME (publ.), p. 231–239.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, G. Regionalized favorability theory for information synthesis in mineral exploration. Math Geol 25, 603–631 (1993). https://doi.org/10.1007/BF00890248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00890248

Key words