Skip to main content
Log in

Alteration of loosely bound calcium in the guinea pig organ of Corti after treatment with diltiazem as calcium channel blocker

  • Original Paper
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

After oral administration of the organic calcium channel blocker diltiazem to guinea pigs for 7 days, calcium ions were precipitated with potassium antimonate in the cochleae. The spatial distribution of the precipitates was studied by energy-filtering transmission electron microscopy and the amount of the ultrastructural reaction products formed was determined semiquantitatively by an image processing system. Compared with untreated control ears, the number of the formed precipitates was reduced drastically in the inner hair cells after diltiazem treatment. In addition, electron microscopic analysis revealed that the number of calcium precipitates attached at the basolateral membrane of the outer hair cells was clearly reduced when compared with untreated control specimens. A large number of histochemical reaction products could be identified in the basilar membrane and were also observed in the untreated control specimens. The spatial distribution of the calcium precipitates in the lamina reticularis was not affected by diltiazem treatment and calcium precipitates could be identified within different cell membranes. The technique used was considered to be helpful for identifying calcium channels ultrastructurally in intact undissected tissues and to support light microscopic analyses and patch-clamp electrophysiological measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbeele T van den, Tran Ba Hay P, Teulon J (1994) A calcium-activated nonselective cationic channel in the basolateral membrane of outer hair cells of the guinea-pig cochlea. Pflügers Arch 417:56–63

    Google Scholar 

  2. Allen TJA, Noble D, Reuter H (1989) Sodium-calcium exchange. Oxford University Press, Oxford

    Google Scholar 

  3. Anniko M, Wróblewski R (1986) Ionic environment of cochlear hair cells. Hear Res 22:279–293

    PubMed  Google Scholar 

  4. Ashmore JF, Meech RW (1986) Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:368–371

    PubMed  Google Scholar 

  5. Assad JA, Corey DP (1992) An active motor for adaptation by vertebrate hair cells. J Neurosci 12:3291–3309

    PubMed  Google Scholar 

  6. Bauer R (1988) Electron spectroscopic imaging: an advanced technique for imaging and analysis in transmission electron microscopy. Methods Microbiol 20:113–146

    Google Scholar 

  7. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384

    PubMed  Google Scholar 

  8. Bertolino M, Llinás RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421

    PubMed  Google Scholar 

  9. Blaustein MP, DiPolo R, Reeves JP (1991) Sodium-calcium exchange: Proceedings of the Second International Conference. Ann NY Acad Sci, p 639

  10. Bobbin RP, Jastreboff PJ, Fallon M, Littmann T (1990) Nimodipine, an L-channel Ca2+ antagonist, reverses the negative summating potential recorded from the guinea pig cochlea. Hear Res 46:277–288

    PubMed  Google Scholar 

  11. Bronner F (1990) Intracellular calcium regulation. Liss, New York

    Google Scholar 

  12. Campbell AK (1983) Intracellular calcium: its universal role as regulator. Wiley, Chichester

    Google Scholar 

  13. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    PubMed  Google Scholar 

  14. Carafoli E (1992) The Ca2+ pump of the plasma membrane. J Biol Chem 267:2115–2118

    PubMed  Google Scholar 

  15. Catterall WA, Striessnig J (1992) Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci 13:256–262

    PubMed  Google Scholar 

  16. Davies E, Knox E, Donaldson I (1994) The usefulness of nimodipine, an L-calcium channel antagonist, in the treatment of tinnitus. Br J Audiol 28:125–129

    PubMed  Google Scholar 

  17. Egle W, Kurz D, Rilk A (1984) The EM-902, a new analytical TEM for ESI and EELS. Magn Electron Microsc 3:4–8

    Google Scholar 

  18. Egle W, Rilk A, Bihr J, Menzel M (1984) Microanalysis in the EM-902: tests on a new TEM for ESI and EELS. Electron Microsc Soc Am Proc 42:566–567

    Google Scholar 

  19. Fettiplace R, Crawford AC, Evans MG (1992) The hair cell's mechanoelectrical transducer channel. Ann NY Acad Sci 656:1–11

    Google Scholar 

  20. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17:149–166

    PubMed  Google Scholar 

  21. Gitter AH, Zenner H-P, Frömter E (1986) Membrane potential and ion channels in isolated outer hair cells of the guinea pig. ORL 48:68–75

    PubMed  Google Scholar 

  22. Gitter AH, Frömter E, Zenner H-P (1992) C-type potassium channels in the lateral cell membrane of guinea pig outer hair cells. Hear Res 60:13–19

    PubMed  Google Scholar 

  23. Godfraind T (1988) Pharmacological basis of the classification of calcium antagonists. Acta Otolaryngol (Stockh) [Suppl] 460:33–41

    Google Scholar 

  24. Godfraind T, Miller RC, Wibo M (1986) Calcium antagonism and calcium entry blocker. Pharmacol Rev 38:321–416

    PubMed  Google Scholar 

  25. Heinrich U-R, Mann W (1988) Ultrastructural localization of Ca2+-binding sites in the spiral limbus, the stria vascularis and Reissner's membrane of the guinea pig. Arch Otorhinolaryngol 245:279–283

    PubMed  Google Scholar 

  26. Heinrich U-R, Drechsler M, Kreutz W, Mann W (1990) Identification of precipitable Ca2+ by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) in the organ of Corti of the guinea pig. Ultramicroscopy 32:1–6

    PubMed  Google Scholar 

  27. Heinrich U-R, Maurer J, Mann W, Kreutz W (1991) Progress in electron microscopic diagnostics: semi-quantitative determination of precipitable calcium in different cell types of the organ of Corti in the guinea pig. J Microsc 162:133–140

    PubMed  Google Scholar 

  28. Hess P (1990) Calcium channels in vertebrate cells. Annu Rev Neurosci 13:337–356

    PubMed  Google Scholar 

  29. Hudspeth AJ (1989) How the ear's works work. Nature 341:397–404

    PubMed  Google Scholar 

  30. Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9

    PubMed  Google Scholar 

  31. Ikeda K, Kusakari J, Takasaka T, Saito Y (1987) The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors. Hear Res 26:117–125

    PubMed  Google Scholar 

  32. Janis RA, Silver PJ, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16:309–591

    Google Scholar 

  33. Jaramillo F, Hudspeth AJ (1993) Displacement-clamp measurements of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci USA 90:1330–1334

    PubMed  Google Scholar 

  34. Jastreboff PJ, Brennan IF (1988) Specific effects of nimodipine on the auditory system. Ann NY Acad Sci 522:716–718

    Google Scholar 

  35. Kimitzuki T, Ohmori H (1993) Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Res 624:143–150

    PubMed  Google Scholar 

  36. Lenzi D, Roberts WM (1994) Calcium signalling in hair cells: multiple roles in a compact cell. Curr Opin Neurobiol 4:496–502

    PubMed  Google Scholar 

  37. Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146

    PubMed  Google Scholar 

  38. Mann W, Heinrich U-R (1988) Cation distribution in the organ of Corti of the guinea pig. Arch Otorhinolaryngol 245:185–190

    PubMed  Google Scholar 

  39. Mann W, Beck C, Beck Chl (1986) Calcium antagonists in the treatment of sudden deafness. Arch Otorhinolaryngol 243:170–173

    PubMed  Google Scholar 

  40. Mann W, Beck C, Schaefer HE (1987) The significance of calcium antagonists in rat experimental tympanosclerosis. Arch Otorhinolaryngol 243:382–386

    PubMed  Google Scholar 

  41. Maurer J, Mann W, Heinrich U-R (1991) Calcium-binding sites in the inner ear after pure-tone stimulation. Eur Arch Otorhinolaryngol 248:242–245

    PubMed  Google Scholar 

  42. Maurer J, Heinrich U-R, Mann W (1994) Differences of inner and outer hair cells in the organ of Corti of the guinea pig in respect to the cellular content of precipitable calcium. Hear Res 72:135–142

    PubMed  Google Scholar 

  43. Maurer J, Riechelmann H, Amedee RG, Mann WJ (1995) Diltiazem for prevention of acoustical trauma during otologic surgery. ORL 57:319–324

    PubMed  Google Scholar 

  44. McCleskey EW (1994) Calcium channels: cellular roles and molecular mechanisms. Curr Opin Neurobiol 4:304–312

    PubMed  Google Scholar 

  45. Meldolesi J, Volpe P, Pozzan T (1988) The intracellular distribution of calcium. Trends Neurosci 11:449–452

    PubMed  Google Scholar 

  46. Meldolesi J, Madeddu L, Pozzan T (1990) Intracellular Ca2+ storage organelles in non-muscle cells: heterogeneity and functional assignment. Biochim Biophys Acta 1055:130–140

    PubMed  Google Scholar 

  47. Nayler WG (1988) The calcium antagonist drugs. Therapeutics 149:682–686

    Google Scholar 

  48. Penniston JT, Enyedi A (1994) Plasma membrane Ca2+ pump: recent developments. Cell Physiol Biochem 4:148–159

    Google Scholar 

  49. Philipson KD, Nicoll DA (1992) Sodium-calcium exchange. Curr Opin Cell Biol 4:678–683

    PubMed  Google Scholar 

  50. Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15:254–259

    PubMed  Google Scholar 

  51. Pietrobon D, Di Virgilo F, Pozzan T (1990) Structural and functional aspects of calcium homeostasis in eukaryotic cells. Eur J Biochem 193:599–622

    PubMed  Google Scholar 

  52. Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    PubMed  Google Scholar 

  53. Rasmussen H (1990) The cycling of calcium as an intracellular messenger. Sci Am 261:44–57

    Google Scholar 

  54. Reimer L (1989) Transmission electron microscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  55. Reimer L (1995) Energy-filtering transmission electron microscopy. (Springer series in optical sciences, vol 71) Springer, Berlin Heidelberg New York

    Google Scholar 

  56. Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195:451–470

    Google Scholar 

  57. Riechelmann H, Mann W, Maurer J (1990) The influence of Ca2+ antagonists on the ciliary activity of the guinea pig trachea. Eur Arch Otorhinolaryngol 248:35–39

    PubMed  Google Scholar 

  58. Roberts WM, Jacobs RA, Hudspeth AJ (1991) The hair cell as a presympatic terminal. Ann NY Acad Sci 635:221–233

    PubMed  Google Scholar 

  59. Schatzmann HJ (1966) ATP-dependent Ca2+ extrusion from human red cells. Experientia 22:364–368

    PubMed  Google Scholar 

  60. Schramm M, Thomas G, Towart R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537

    PubMed  Google Scholar 

  61. Snatch TP, Reiner PB (1992) Ca2+ channels: diversity of form and function. Curr Opin Neurobiol 2:247–253

    PubMed  Google Scholar 

  62. Spedding M (1987) Three types of Ca2+ channel explain discrepancies. Trends Pharmacol Sci 8:115–118

    Google Scholar 

  63. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–46

    PubMed  Google Scholar 

  64. Theopold H-M (1985) Nimodipine (Baye 9736), A new concept in the treatment of inner ear disease? Laryngol Rhinol Otol 64:609–613

    Google Scholar 

  65. Triggle DJ (1989) Drug active at voltage-dependent calcium channels. Neurotransmissions 5:1–4

    Google Scholar 

  66. Triggle DJ (1990) Calcium, calcium channels, and calcium channel antagonists. Can J Physiol Pharmacol 68:1474–1481

    PubMed  Google Scholar 

  67. Triggle DJ (1991) Calcium-channel drugs: structure-function relationships and selectivity of action. J Cardiovasc Pharmacol 18 [Suppl 10]:Sl-S6

    Google Scholar 

  68. Vanhoutte PM, Paoletti R (1987) The WHO classification of calcium antagonists. Trends Pharmacol 8:4–5

    Google Scholar 

  69. Vanhoutte PM, Paoletti R, Govoni S (1988) Calcium antagonist. Pharmacology and clinical research, Ann NY Acad Sci 522

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, U.R., Maurer, J. & Mann, W. Alteration of loosely bound calcium in the guinea pig organ of Corti after treatment with diltiazem as calcium channel blocker. Eur Arch Otorhinolaryngol 254, 223–229 (1997). https://doi.org/10.1007/BF00874093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874093

Key words