Skip to main content
Log in

Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

This paper presents the basic configuration and preliminary performance of a twenty-layer oceanic general circulation model which represents a portion of the recent progress in developing coupled ocean-atmosphere general circulation models made by the authors. The model uses latitude/depthdependent thermohaline-stratification subduction, “η”-coordinate, three-dimensional implicit diffusion, complete convective adjustment, separating and coupling of external and internal modes and Asselin temporal filter, and thermodynamic sea-ice calculation. With seasonally varying climatological forcing at the surface and enhanced surface salinities in the region adjacent Antarctica, the model has been integrated for one thousand years to reach a quasiequilibrium state. Preliminary verification shows that the model is capable of simulating successfully not only many aspects of the upper ocean circulation but also an acceptable thermohaline circulation. The modelled overturning rate of the North Atlantic Deep Water (NADW) is greater than 15Sv. The simulated overturning rate of the Antarctic Bottom Water (AABW) is about 20Sv. The southward outflow of NADW can be identified from not only the meridional overturning streamfunction but also the current fields at four deeper levels from 1455m to 2475m. The AABW northward outflow exists at some bottom levels below 2600m, and mainly flows towards the Pacific basin.

Major problems in the present simulation include the underestimate of the NADW outflow, the failure to simulate the Antarctic Intermediate Water (AAIW), the too fresh bottom water and the too diffuse thermocline of the model. A sensitivity experiment has revealed that the model diffusion process has an important impact on the simulation of both the thermocline and the NADW outflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, R. C., Mobley, R. L., 1976: Monthly average sea-surface temperatures and ice-pack limits on a 1° global grid.Mon. Wea. Rev. 104, 143–148.

    Google Scholar 

  • Asselin, R., 1972: Frequency filter for time integrations.Mon. Wea. Rev. 100/6, 487–490.

    Google Scholar 

  • Betteen, M., Han, Y.-J., 1981: On the computational noise of finite-difference schemes used in ocean models.Tellus 33, 387–396.

    Google Scholar 

  • Bryan, K., 1969: A numerical method for the study of circulation of the World Ocean.J. Comp. Phys. 3, 347–376.

    Google Scholar 

  • Bryan, K., 1979: Models of the ocean circulation and the global heat balance. In GARP Publication series, No. 22, Part I, 23–40.

  • Bryan, K., Cox, M. D., 1972: An approximate equation of state for numerical models of ocean circulation.J. Phys. Oceanogr. 2, 510–514.

    Google Scholar 

  • Bryan, K., Lewis, L. J., 1979: A water mass model of the World Ocean.J. Geophys. Res. 85, 2503–2517.

    Google Scholar 

  • Cox, M. D., 1984: A primitive equation three-dimensional model of the ocean. GFDL Ocean Group Tech. Rep., No. 1, 143pp.

  • Cox, M. D., 1989: An idealized model of the world ocean. Part I: The global-scale water masses.J. Phys. Oceanogr. 19, 1730–1752.

    Google Scholar 

  • Eckard, C., 1958: Properties of water. Part II.Amer. J. Sci. 256, 225–240.

    Google Scholar 

  • England, M. H., 1993: Representing the global-scale water masses in ocean circulation models.J. Phys. Oceanogr. 23, 1523–1552.

    Google Scholar 

  • England, M. H., Godfrey, J. S., Hirst, A. C., Tomczak, M., 1993: The mechanism for Antarctic intermediate water renewal in a world ocean model.J. Phys. Oceanogr. 23, 1553–1560.

    Google Scholar 

  • Esbensen, S. K., Kushnir, Y., 1981: Heat budget of the global ocean: estimates from surface marine observations. Report No. 29, Climate Research Institute, Oregon State Univ., Corvallis, Oregon, 271pp.

    Google Scholar 

  • Gates, W. L., Nelson, A. B., 1975: A new (revised) tabulation of the Scripps topography on 1° global grid. Part II: Ocean depths. R-1227-1-APPA, The Rand Cooperation, Santa Monica, CA., 132pp.

    Google Scholar 

  • Gates, W. L., Mitchell, J. F. B., Boer, G. J., Cubasch, U., Meleshko, V. P., 1992: Climate modelling, climate prediction and model validation. In: Houghton J.T. et al. (eds.)Climate Change 1992, The Supplementary Report to The IPCC Scientific Assessment. UK: Cambridge University Press, pp. 97–134.

    Google Scholar 

  • Gleckler, P. J., Randall, D. A., Boer, G., Colman, R., Dix, M., Galin, V., Helfand, M., Kiehl, J., Kitoh, A., Lau, W., Liang, X.-Z., Lykossov, V. L., McAvaney, B., Miyakoda, K., Planton, S., 1994: Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models. PCMDI Report No. 15, UCRL-ID-116893, 13pp.

  • Han, Y.-J., Lee, S.-W., 1981: A new analysis of monthly mean wind stress over the global ocean. Report No. 26, Climatic Research Institute, Oregon State University, Coravallis, Oregon, 148pp.

    Google Scholar 

  • Han, Y.-J., 1984: A numerical world ocean general circulation model. Part I. Basic design and barotropic experiment; Part II. A baroclinic experiment.Dyn. Atmos. Oceans 8, 107–172.

    Google Scholar 

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models.J. Phys. Oceanogr. 1, 241–248.

    Google Scholar 

  • Hellerman, S., Rosenstein, M., 1983: Normal monthly wind stress data over the world ocean with error estimates.J. Phys. Oceanogr. 13, 1093–1104.

    Article  Google Scholar 

  • Jin, X.-Z., Zhang, X.-H., 1994: Simulation of thermohaline circulation and global warming.Chinese J. Atmos. Sci. (in press).

  • Killowrth, P. D., Staniforth, D., Webb, D. J., Paterson, S. M., 1989: A free surface Bryan-Cox-Semtner model. Report No. 270 (Reprinted 1993). Institute of Oceanographic Sciences, Deacon Laboratory, 87pp.

  • Killworth, P. D., Staniforth, D., Webb, D. J., Paterson, S. M., 1991: The development of a free surface Bryan-Cox-Semtner model.J. Phys. Oceanogr. 21, 1333–1348.

    Google Scholar 

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Professional Paper 13, U.S. Government Printing Office, Washington, D.C., 173pp.

    Google Scholar 

  • Maier-Reimer, E., Mikolajewicz, U., Hasselmann, K., 1991: On the sensitivity of the global ocean circulation to changes in the surface heat flux forcing. Report No. 68, Max-Planck-Institut Meteorologie, Hamburg, July 1991, 67pp.

    Google Scholar 

  • Marotzke, J., 1991: Influence of convective adjustment on the stability of the thermohaline circulation.J. Phys. Oceanogr. 21, 903–907.

    Google Scholar 

  • Mesinger, F., Janjic, Z. I., 1975: Problems and numerical methods of the incorporation of mountains in atmospheric models.Lectures in Applied Mathematics 22, 81–120.

    Google Scholar 

  • Pacanowski, R. C., Dixon, K. W., Rosati, A., 1991: The GFDL Modular Ocean Model Users Guide Version 1.0. GFDL Ocean Group Tech. Rep., No. 2, 46pp.

  • Parkinson, C. L., Washington, W. M., 1979: A largescale numerical model of sea ice.J. Geophys. Res. 84, 311–337.

    Google Scholar 

  • Semtner, Jr. A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate.J. Phys. Oceanogr. 6, 379–389.

    Google Scholar 

  • Weaver, A. J., Hughes, T. M. C., 1992: Stability and variability of the thermohaline circulation and its link to climate.C 2GCR Report No. 92-5. McGill University, 56pp.

  • Waever, J. W., Sarachik, E. S., 1990: On the importance of vertical resolution in certain ocean general circulation models.J. Phys. Oceanogr. 20, 600–609.

    Google Scholar 

  • Warren, B. A., 1981: Deep circulation of the World Ocean. In: Warren, B. A., Wunsch, C. (eds.)Evolution of Physical Oceanography. Cambridge, Massachusetts, MIT Press, pp. 6–41.

    Google Scholar 

  • Yu, R.-C., 1989: Design of the limited area numerical weather prediction model with steep mountains,Scietia Atmospherica Sinica 132/2, 139–149 (in Chinese).

    Google Scholar 

  • Zeng, Q.-C., 1983: Some numerical ocean-atmosphere coupling models. Papers presented at the First International Symposium Integrated Global Ocean Monitoring, Tallinn, USSR, Oct. 2–10.

  • Zeng, Q.-C., Zhang, X.-H, Liang, X.-Z., Yuan, C.-G., Chen, S. F., 1989: Documentation of IAP Two-Level Atmospheric General Circulation Model. DOE/ER/60314-Hl, TR044, Feb., 1989, 383pp.

  • Zhang, R.-H., 1989: The numerical simulation studies for oceanic circulation in the Pacific basin. Ph.D. Thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 184pp.

  • Zhang, X.-H., Liang, X.-Z., 1989: A numerical world ocean general circulation model.Adv. Atmos. Sci. 6/1, 43–61.

    Google Scholar 

  • Zhang, X.-H., Bao, N., Wang, W.-Q., 1992: Numerical simulation of seasonal cycle of world ocean general circulation. La mer. 30, 239–250 (Proceedings of the Sixth Japan and East China Seas Study Workshop, April 22–27, 1991, Fukuoda, Japan).

    Google Scholar 

  • Zhang, X.-H., Bao, N., Yu, R.-C., Wang, W.-Q., 1992: Coupling scheme experiments based on an atmospheric and an oceanic GCM.Chinese J. Atmos. Sci. 16/2, 129–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 16 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.H., Chen, K.M., Jin, X.Z. et al. Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model. Theor Appl Climatol 55, 65–87 (1996). https://doi.org/10.1007/BF00864703

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00864703

Keywords

Navigation