Skip to main content
Log in

An investigation on the reaction mechanism for the partial oxidation of methane to synthesis gas over platinum

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The partial oxidation of methane to synthesis gas has been investigated by admitting pulses of pure methane, pure oxygen and mixtures of methane and oxygen to platinum sponge at temperatures ranging from 973 to 1073 K. On reduced platinum the decomposition of methane results in the formation of surface carbon and hydrogen. No deposition of carbon occurs during the interaction of methane with a partly oxidised catalyst. Oxygen is present in three different forms under the conditions studied: platinum oxide, dissolved oxygen and chemisorbed oxygen species. Carbon monoxide and hydrogen are produced directly from methane via oxygen present as platinum oxide. Activation of methane involving dissolved oxygen provides a parallel route to carbon dioxide and water. Both platinum oxide and chemisorbed oxygen species are involved in the oxidation of carbon monoxide and hydrogen. In the presence of both methane and dioxygen at a stoichiometric feed ratio the dominant pathways are the direct formation of CO and H2 followed by their consecutive oxidation. A Mars-van Krevelen redox cycle is postulated for the partial oxidation of methane: the oxidation of methane is accompanied by the reduction of platinum oxide, which is reoxidised by incorporation of dioxygen into the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and J.H. Lunsford, J. Catal. 132 (1991) 117.

    Google Scholar 

  2. M. Prettre, Ch. Eichner and M. Perrin, Trans. Faraday Soc. 43 (1946) 335.

    Google Scholar 

  3. A.T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey, A.J. Murrell and P.D.F. Vernon, Nature 344 (1990) 319.

    Google Scholar 

  4. P.D.F. Vernon, M.L.H. Green, A.K. Cheetham and A.T. Ashcroft, Catal. Lett. 6 (1990) 181.

    Google Scholar 

  5. P.D.F. Vernon, M.L.H. Green, A.K. Cheetham and A.T. Ashcroft, Catal. Today 13 (1992) 417.

    Google Scholar 

  6. O.V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994) 249.

    Google Scholar 

  7. K. Walter, O.V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994) 261.

    Google Scholar 

  8. V.R. Choudhary, A.M. Rajput and B. Prabhakar, Catal. Lett. 15 (1992) 363.

    Google Scholar 

  9. V.R. Choudhary, A.M. Rajput and B. Prabhakar, J. Catal. 139 (1993) 326.

    Google Scholar 

  10. V.R. Choudhary, A.M. Rajput and V.H. Rane, J. Phys. Chem. 96 (1992) 8686.

    Google Scholar 

  11. V.R. Choudhary, A.M. Rajput and V.H. Rane, Catal. Lett. 16 (1992) 269.

    Google Scholar 

  12. V.R. Choudhary, S.D. Sansare and A.S. Mamman, Appl. Catal. 90 (1992) L1.

    Google Scholar 

  13. D. Dissanayake, M.P. Rosynek and J.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.

    Google Scholar 

  14. D.A. Hickman and L.D. Schmidt, Science 259 (1993) 343.

    Google Scholar 

  15. D.A. Hickman, E.A. Haupfear and L.D. Schmidt, Catal. Lett. 17 (1993) 223.

    Google Scholar 

  16. D.A. Hickman and L.D. Schmidt, J. Catal. 138 (1992) 267.

    Google Scholar 

  17. D.A. Hickman and L.D. Schmidt, AIChE J. 39 (1993) 1164.

    Google Scholar 

  18. J.A. Lapszewicz and X.-Z. Jiang, Prepr. Am. Chem. Soc. Div. Pet. Chem. 37 (1992) 252.

    Google Scholar 

  19. Y. Matsumura and J.B. Moffat, Catal. Lett. 24 (1994) 59.

    Google Scholar 

  20. T. Engel and G. Ertl, Adv. Catal. 28 (1979) 1.

    Google Scholar 

  21. T. Matsushima, D.B. Almy and J.M. White, Surf. Sci. 67 (1977) 89.

    Google Scholar 

  22. R. Ducros and R.P. Merrill, Surf. Sci. 55 (1976) 227.

    Google Scholar 

  23. H. Niehus and G. Comsa, Surf. Sci. 93 (1980) L147.

    Google Scholar 

  24. P. Légaré, G. Maire, B. Carrière and J.P. Deville, Surf. Sci. 68 (1977) 348.

    Google Scholar 

  25. J.L. Gland, B.A. Sexton and G.B. Fisher, Surf. Sci. 95 (1980) 587.

    Google Scholar 

  26. E. Kikuchi, P.C. Flynn and S.E. Wanke, J. Catal. 34 (1974) 132.

    Google Scholar 

  27. C.T. Campbell, G. Ertl, H. Kuipers and J. Segner, Surf. Sci. 107 (1981) 220.

    Google Scholar 

  28. J.L. Gland, Surf. Sci. 93 (1980) 487.

    Google Scholar 

  29. G.N. Derry and P.N. Ross, Surf. Sci. 140 (1984) 165.

    Google Scholar 

  30. P.C. Flynn and S.E. Wanke, J. Catal. 36 (1975) 244.

    Google Scholar 

  31. B. Carrière, P. Légaré and G. Maire, J. Chim. Phys. 71 (1974) 355.

    Google Scholar 

  32. B. Lang, P. Légaré and G. Maire, Surf. Sci. 47 (1975) 89.

    Google Scholar 

  33. A.J. Melmed, J. Appl. Phys. 36 (1965) 3691.

    Google Scholar 

  34. R.W. McCabe and L.D. Schmidt, Surf. Sci. 60 (1976) 85.

    Google Scholar 

  35. R.W. McCabe and L.D. Schmidt, Surf. Sci. 65 (1977) 189.

    Google Scholar 

  36. H.P. Bonzel, A.M. Franken and G. Pirug, Surf. Sci. 104 (1981) 625.

    Google Scholar 

  37. H. Niehus and G. Comsa, Surf. Sci. 102 (1981) L14.

    Google Scholar 

  38. M. Peuckert and H.P. Bonzel, Surf. Sci. 145 (1984) 239.

    Google Scholar 

  39. R.K. Nandi, F. Molinaro, C. Tang, J.B. Cohen, J.B. Butt and R.L. Burwell Jr., J. Catal. 78 (1982) 289.

    Google Scholar 

  40. J. Lauterbach, K. Asakura and H.H. Rotermund, Surf. Sci. 313 (1994) 52.

    Google Scholar 

  41. H.H. Rotermund, J. Lauterbach and G. Haas, Appl. Phys. A 57 (1993) 507.

    Google Scholar 

  42. J. Lauterbach, G. Haas, H.H. Rotermund and G. Ertl, Surf. Sci. 294 (1993) 116.

    Google Scholar 

  43. A.L. Vishnevskii and V.I. Savchenko, React. Kinet. Catal. Lett. 38 (1989) 167.

    Google Scholar 

  44. J.T. Gleaves, J.R. Ebner and T.C. Kuechler, Catal. Rev. Sci. Eng. 30 (1988) 49.

    Google Scholar 

  45. M.B. Lee, Q.Y. Yang, S.L. Tang and S.T. Ceyer, J. Chem. Phys. 85 (1986) 1693.

    Google Scholar 

  46. S.G. Brass and G. Ehrlich, Surf. Sci. 187 (1987) 21.

    Google Scholar 

  47. S.G. Brass and G. Ehrlich, Surf. Sci. 191 (1987) L819.

    Google Scholar 

  48. E.G.M. Kuijpers, J.W. Jansen, A.J. van Dillen and J.W. Geus, J. Catal. 72 (1981) 75.

    Google Scholar 

  49. J.D. Beckerle, Q.Y. Yang, A.D. Johnson and S.T. Ceyer, J. Chem. Phys. 86 (1987) 7236.

    Google Scholar 

  50. A.B. Anderson and J.J. Maloney, J. Phys. Chem. 92 (1988) 809.

    Google Scholar 

  51. N.C. Rigas, G.D. Svoboda and J.T. Gleaves, in:Catalytic Selective Oxidation, ACS Symposium Series, Vol. 523, eds. S.T. Oyama and J.W. Hightower (The American Chemical Society, Washington, 1993) ch. 14.

    Google Scholar 

  52. P. Mars and D.W. van Krevelen, Chem. Eng. Sci. 3 (1954) 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallens, E.P.J., Hoebink, J.H.B.J. & Marin, G.B. An investigation on the reaction mechanism for the partial oxidation of methane to synthesis gas over platinum. Catal Lett 33, 291–304 (1995). https://doi.org/10.1007/BF00814232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00814232

Keywords

Navigation