Skip to main content
Log in

Sarcosine oxidase: structure, function, and the application to creatinine determination

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Determination of creatinine is important in the clinical laboratory. Jaffé reaction has long been used to determine creatinine, but the method suffers from various interferences. To overcome this problem, the enzymatic methods were invented and have been used widely. Sarcosine oxidase has a critical role in the enzymatic method. Of sarcosine oxidases,Corynebacterium enzyme has been studied extensively in kinetic and structural aspects. The enzyme contains noncovalently bound and covalently bound FADs, and consists of 4 non-identical subunits (A, B, C, D). The covalently bound FAD is bound to the subunit B. The rate of oxidation of sarcosine was explained by the rates of the oxidation and reduction of the bound FADs. From the chemical modification of the enzyme with iodoacetamide, the amino acid sequence around the non-covalently bound FAD is suggested and the modification changed the enzyme so that the only noncovalently bound FAD functions in the oxidation of sarcosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali SN, Zeller H-D, Calisto MK, Jorns MS (1991) Kinetics of electron entry, exit, and interflavin electron transfer during catalysis by sarcosine oxidase. Biochemistry 30: 10980–10986

    Google Scholar 

  • Bolleter WT, Bushman CJ, Tidwell PW (1961) Spectrophotometric determination of ammonia as indophenol. Anal Chem 33: 592–594

    Google Scholar 

  • Bowers LD, Wong ET (1980) Kinetic serum creatinine assays. II. A critical evaluation and review. Clin Chem 26: 555–561

    Google Scholar 

  • Bruns DE (1988) Lactulose interferes in the alkaline picrate assay for creatinine. Clin Chem 34: 2592–2593

    Google Scholar 

  • Butler AR (1975) The Jaffé reaction. Identification of the colored species. Clin Chim Acta 59: 227–232

    Google Scholar 

  • Butler AR (1977) Jaffé reaction mechanism debated. Clin Chem 23: 613–614

    Google Scholar 

  • Buysse AM, Delanghe JR, De Buyzere ML, De Scheerder IK, De Mol AM, Noens L (1990) Enzymatic erythrocyte creatine determinations as an index for cell age. Clin Chim Acta 187: 155–162

    Google Scholar 

  • Chlumsky LJ, Zhang L, Jorns MS (1993) Preparation and properties of recombinantCorynebacterial sarcosine oxidase. The 11th Intern Symp on Flavins and Flavoproteins. Abstract L31. Nagoya, Japan

  • Cook RJ, Misono KS, Wagner C (1980) Identification of the covalently bound flavin of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria. J Biol Chem 259: 12475–12480

    Google Scholar 

  • Cook RJ, Wagner C (1986) Dimethylglycine dehydrogenase and sarcosine dehydrogenase: mitochondrial folate-binding proteins from rat liver. Methods Enzymol 122: 255–260

    Google Scholar 

  • Cramer H, Dauwalder H, Meier H, Colombo JP (1987) Enzymatic determination of red cell creatine as an index of hemolysis. Clin Biochem 20: 329–332

    Google Scholar 

  • Decker K (1982) Biosynthesis of covalent flavoproteins. In: Massey V and Williams CH (eds) Flavins and Flavoproteins, Elsevier North Holland, Amsterdam, pp 465–472

    Google Scholar 

  • Fehr J, Knob M (1979) Comparison of red cell creatine level and reticulocyte count in appraising the severity of hemolytic processes. Blood 53: 966–976

    Google Scholar 

  • Folin O (1904) Beitrag zur Chemie des Kreatinins und Kreatins in Harne. Z Physiol Chem 41: 223–224

    Google Scholar 

  • Fossati P, Prencipe L, Berti G (1981) Enzymatic creatinine assay: A new colorimetric method based on hydrogen peroxide measurement. Clin Chem 29: 1494–1496

    Google Scholar 

  • Frisell WR, Mackenzie CG (1962) Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase. J Biol Chem 237: 94–98

    Google Scholar 

  • Fushimi R, Suminoe A, Yasuhara M, Suehisa E, Matsui M, Yamaguchi Y, Amino N, Shin SH, Orita Y, Miyai K (1992) Negative interference by ethamsylate in enzymatic assay of serum creatinine involving peroxidase-coupled reaction. Clin Chem 38: 169–170

    Google Scholar 

  • Goren MP, Osborne S, Wright RK (1986) A peroxidase-coupled kinetic enzymatic procedure evaluated for measuring serum and urinary creatinine. Clin Chem 32: 548–551

    Google Scholar 

  • Griffiths WJ, Fitzpatrick M (1967) The effect of age on the creatine in red cells. Br J Haematol 13: 175–180

    Google Scholar 

  • Guder WG, Hoffmann GE, Hubbuch A, Poppe WA, Siedel J, Price CP (1986) Multicentre evaluation of an enzymatic method for creatinine determination using a sensitive color reagent. J Clin Chem Clin Biochem 24: 889–902

    Google Scholar 

  • Hayashi S, Nakamura S, Suzuki M (1980)Corynebacteriun sarcosine oxidase: A unique enzyme having covalently-bound and noncovalently-bound flavins. Biochem Biophys Res Commun 96: 924–930

    Google Scholar 

  • Hayashi S, Suzuki M, Nakamura S (1982) Identification of the covalently-bound flavin prosthetic group ofCorynebacterium sarcosine oxidase. Biochem Int 4: 617–620

    Google Scholar 

  • Hayashi S, Suzuki M, Nakamura S (1983a) Steady-state kinetics and spectral properties ofCorynebacterium sarcosine oxidase. Biochim Biophys Acta 742: 630–636

    Google Scholar 

  • Hayashi S, Suzuki M, Nakamura S (1983b) Chemical modification ofCorynebacterium sarcosine oxidase: Role of sulfhydryl and histidyl groups. J Biochem 94: 551–558

    Google Scholar 

  • Hayashi S (1984) Mechanism of reduction ofCorynebacterium sarcosine oxidase by dithiothreitol. J Biochem 95: 1201–1207

    Google Scholar 

  • Inouye Y, Nishimura M, Matsuda K, Hoshika H, Iwasaki H, Hujimura K, Asano K, Nakamura S (1987) Purification and characterization of sarcosine oxidase ofStreptomyces origin. Chem Pharm Bull 35: 4194–4202

    Google Scholar 

  • Jacobs RM, Lumsden JH, Taylor JA, Grift E (1991) Effects of interferents on the kinetic Jaffé reaction and an enzymatic colorimetric test for serum creatinine concentration determination in cats, cows, dogs and horses. Can J Vet Res 55: 150–154

    Google Scholar 

  • Jaffé M (1886) Über den Niederschlag, welchen Pikrinsäure in normalen Harn erzeugt und über eine neue Reaction des Kreatinins. Z Physiol Chem 10: 391–400

    Google Scholar 

  • Jorns MS (1985) Properties and catalytic function of the two nonequivalent flavins in sarcosine oxidase. Biochemistry 24: 3189–3194

    Google Scholar 

  • Kawamura-Konishi Y, Suzuki H (1987) Kinetic studies on the reaction mechanism of sarcosine oxidase. Biochim Biophys Acta 915: 346–356

    Google Scholar 

  • Kim JM, Shimizu S, Yamada H (1986) Sarcosine oxidase involved in creatinine degradation inAlcaligenes Denitrificans subsp.denitrificans J9 andArthrobacter spp. J5 and J11. Agric Biol Chem 50: 2811–2816

    Google Scholar 

  • Kim JM, Shimizu S, Yamada H (1987) Crystallization and characterization of sarcosine oxidase fromAlcaligenes denitrificans subsp.denitrificans. Agric Biol Chem 51: 1167–1168

    Google Scholar 

  • Kinoshita T, Hiraga Y (1980) A fluorometric determination of serum creatinine and creatine using a creatinineamidohydrolase-creatineamidinohydrolase-sarcosine oxidaseperoxidase system and diacetyldichlorofluorescin. Chem Pharm Bull 28: 3501–3506

    Google Scholar 

  • Koyama Y, Yamamoto-Otake H, Suzuki M, Nakano E (1991) Cloning and expression of the sarcosine oxidase gene fromBacillus sp. NS-129 inEscherichia coli. Agric Biol Chem 55: 1259–1263

    Google Scholar 

  • Kroll MH, Roach NA, Poe B, Elin RJ (1987) Mechanism of interference with the Jaffé reaction for creatinine. Clin Chem 33: 1129–1132

    Google Scholar 

  • Kvalnes-Krick K, Jorns MS (1987) Interaction of tetrahydrofolate and other folate derivatives with bacterial sarcosine oxidase. Biochemistry 26: 7391–7395

    Google Scholar 

  • Lindback B, Bergman A (1988) New commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffé method and isotope dilution-mass spectrometry. Clin Chem 35: 835–837

    Google Scholar 

  • Margrey M, Margrey K, Bruns DE, Boyd JC, Fortier GA, Renoe BW, Savory J (1984) Enzymatic assay for creatinine with fixed-time kinetics on a centrifugal analyzer. Ann Clin Lab Sci 14: 298–303

    Google Scholar 

  • Matsuda Y, Hoshika H, Inouye Y, Ikuta S, Matsuura K, Nakamura S (1987) Purification and characterization of sarcosine oxidase ofBacillus origin. Chem Pharm Bull 35: 711–717

    Google Scholar 

  • Miller BF, Dubos R (1937) Determination by a specific, enzymatic method of the creatinine content of blood and urine from normal and nephritic individuals. J Biol Chem 121: 457–464

    Google Scholar 

  • Mori N, Sano M, Tani Y, Yamada H (1980) Purification and properties of sarcosine oxidase fromCylindrocarpon didymum M-1. Agric Biol Chem 44: 1391–1397

    Google Scholar 

  • Murray RL (1987) Creatinine. In: Pesce AJ, Kaplan LA (eds) Methods in clinical chemistry. CV Mosby Co, St Louis, pp 10–17

    Google Scholar 

  • Narayanan S, Appleton HD (1980) Creatinine: A review. Clin Chem 26: 1119–1126

    Google Scholar 

  • Nishiya Y, Imanaka T (1993) Cloning and sequencing of the sarcosine oxidase gene fromArthrobacter sp. TE1826. J Ferm Bioeng 75: 239–244

    Google Scholar 

  • Noble MA, Harper B, Grant AG, Bernstein M (1984) Rapid determination of 5-fluorocytosine levels in blood. J Clin Microb 20: 996–997

    Google Scholar 

  • Ogushi S, Nagao K, Emi S, Ando M, Tsuru D (1988) Sarcosine oxidase fromArthrobacter ureafaciens: Purification and some properties. Chem Pharm Bull 36: 1445–1450

    Google Scholar 

  • Oka I, Yoshimoto T, Rikitake K, Ogushi S, Tsuru D (1979) Sarcosine dehydrogenase fromPseudomonas pudida: Purification and some properties. Agri Biol Chem 43: 1197–1203

    Google Scholar 

  • Pinto JT, Frisell WR (1975) Characterization of the peptide-bound flavin of a bacterial sarcosine dehydrogenase. Arch Biochem Biophys 169: 483–491

    Google Scholar 

  • Sato M, Ohishi N, Yagi K (1979) Identification of a covalently bound flavoprotein in rat liver mitochondria with sarcosine dehydrogenase. Biochem Biophys Res Commun 87: 706–711

    Google Scholar 

  • Seelig Von HP (1969) Die Jaffé-Reaktion mit Kreatinin Reaktionsprodukt und allgemeine Reaktionsbedingungen. Z Klin Chem Klin Biochem 7: 581–585

    Google Scholar 

  • Shiga Y, Hayashi S, Suzuki M, Suzuki K, Nakamura S (1983) Amino acid sequence around the covalently-bound flavin prosthetic group ofCorynebacterium sarcosine oxidase. Biochem Int 6: 737–742

    Google Scholar 

  • Shimizu S, Kim J-M, Yamada H (1989) Microbial enzymes for creatinine assay: a review. Clin Chim Acta 185: 241–252

    Google Scholar 

  • Spencer K (1986) Analytical reviews in clinical biochemistry: the estimation of creatinine. Ann Clin Biochem 23: 1–25

    Google Scholar 

  • Suzuki H, Kawamura-Konishi Y (1987) Sulfhydryl groups and the binding site of non-covalently bound FAD ofCorynebacterium sarcosine oxidase. In: Edmondson DE, McCormick DB (eds) Flavins and flavoproteins 1987. Walter de Gruyter, Berlin New York, pp 717–720

    Google Scholar 

  • Suzuki H, Kawamura-Konishi Y (1988) Presence of AMP binding sequence in subunit B ofCorynebacterium sarcosine oxidase. Biochem Int 17: 577–583

    Google Scholar 

  • Suzuki H, Kawamura-Konishi Y (1991) Cysteine residues in the active site ofCorynebacterium sarcosine oxidase. J Biochem 109: 909–917

    Google Scholar 

  • Suzuki K, Ogishima M, Sugiyama M, Inouye Y, Nakamura S, Imamura S (1992) Molecular cloning and expression of aStreptomyces sarcosine oxidase gene in Streptomyces lividans. Biosci Biotech Biochem 56: 432–436

    Google Scholar 

  • Suzuki M (1981) Purification and some properties of sarcosine oxidase fromCorynebacterium sp. U-96. J Biochem 89: 559–607

    Google Scholar 

  • Suzuki M, Yoshida M (1984) A new enzymatic serum creatinine measurement based on an endogenous creatine eliminating system. Clin Chim Acta 143: 147–155

    Google Scholar 

  • Szulmajster J (1958) Bacterial degradation of creatinine. II. Creatinine desimidase. Biochim Biophys Acta 30: 154–163

    Google Scholar 

  • Vasiliades J (1976) Reaction of alkaline sodium picrate with creatinine: I. Kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin Chem 22: 1664–1671

    Google Scholar 

  • Vasiliades J (1987) Jaffé reaction mechanism debated. Clin Chem 23: 614–614

    Google Scholar 

  • Wahlefeld AW, Herz G, Bergmeyer HU (1972) A completely enzymatic determination of creatinine in human sera or urine. Scand J Clin Lab Invest 29, [Suppl] 126: Abstract 30.1.

  • Walker JB (1979) Creatine: Biosynthesis, regulation and function. Adv Enzymol 50: 177–242

    Google Scholar 

  • Watts GF, Pillay D (1990) Effect of ketones and glucose on the estimation of urinary creatinine: implications for microalbuminuria screening. Diabetic Med 7: 263–265

    Google Scholar 

  • Wittwer AJ, Wagner C (1980) Identification of folate binding protein of mitochondria as dimethylglycine dehydrogenase. Proc Natl Acad Sci USA 77: 4484–4488

    Google Scholar 

  • Wittwer AJ, Wagner C (1981a) Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Purification and folate-binding characteristics. J Biol Chem 256: 4102–4108

    Google Scholar 

  • Wittwer AJ, Wagner C (1981b) Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Flavoprotein nature and enzymatic properties of the purified proteins. J Biol Chem 256: 4109–4115

    Google Scholar 

  • Yasuhara M, Fujita S, Arisue K, Kohda K, Hayashi C (1982) A new enzymatic method to determine creatine. Clin Chim Acta 122: 181–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H. Sarcosine oxidase: structure, function, and the application to creatinine determination. Amino Acids 7, 27–43 (1994). https://doi.org/10.1007/BF00808444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808444

Keywords

Navigation