Skip to main content
Log in

Finite elements for capturing localized failure

Finite Elemente zur Erfassung lokalisierten Versagens

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

In the paper, we examine the ability of different finite element enhancements to capture localized failure in elasto-plastic solids. Altogether seven variations of four noded elements are studied, from the standard bilinear quadrilateral up to recent mixed strain-displacement expansions. The weak form of localization determines whether an element is capable to reproduce discontinuous bifurcation for elasto-plastic material properties which exhibit a singularity of the localization tensor in the element domain. Both, discontinuous tensile splitting and shear banding are examined in square and quadrilateral element, geometries within the frame of associated and non-associated elasto-plastic Rankine-and Drucker-Prager descriptions. Aside from spectral studies of discontinuous bifurcation on the element level, the effect of progressive failure computations is examined with the help of two boundary value problems.

Übersicht

In diesem Artikel untersuchen wir die Eignung verschiedener Finite-Element-Formulierungen zum Erfassen lokalisierten Versagens in elasto-plastischen Materialien. Es werden insgesamt sieben verschiedene 4-Knoten-Elemente betrachtet, vom bilinearen Standard-Viereckelement bis zu jüngsten gemischten Verzerrungs-Verschiebungs-Ansätzen. Der schwache Lokalisierungstest bestimmt ob ein Element in der Lage, ist, diskontinuierliche Verzweigung auf konstitutiver Ebene auch auf Elementebene zu reflektieren. Ein elasto-plastisches Material verzweigt, diskontinuierlich, sobald der akustische Tensor singulär wird. Sowohl diskontinuierliche Zugbruch-als auch Schubbandversagensformen werden für allgemein viereckige und quadratische Elementgeometrien im Rahmen von assoziierten und nicht assoziierten Rankine-und Drucker-Prager-Beschreibungen untersucht. Neben den spektralen Eigenschaften der diskontinuierlichen Verzweigung auf Elementebene wird der Effekt der progressiven Versagensberechnung anhand von zwei Randwertproblemen untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vardoulakis, I.: Bifurcation analysis of the triaxial test on sand samples. Acta Mech. 32 (1979) 35–54

    Google Scholar 

  2. Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.: On numerical accurate finite element solutions in the fully plastic range. Comp. Meth. Appl. Mech. Engr. 4 (1974) 153–177

    Google Scholar 

  3. Hughes, T. J. R.: The finite element method. Englewood Cliffs, New Jersey: Prentice-Hall 1987

    Google Scholar 

  4. Ortiz, M.; Leroy, Y. Needleman, A.: A finite element method for localization failure analysis. Comp. Meth. Appl. Mech. Engr. 61 (1987) 189–224

    Google Scholar 

  5. Sobh, N.: Bifurcation analysis of tangential material operators. Ph. D. Dissertation, CEAE Department, University of Colorado, Boulder, 1987

    Google Scholar 

  6. Willam, K.; Sobh, N.; Sture, S.: Elastic-plastic tangent operators: Localization studies on the constitutive and finite element levels. In: ASME-WAM'87 Symp. Advances in inelastic analysis, Boston 1987 Vol. 88, pp. 107–127, Nakazawa, S.; Rebelo, N.; Willam K. (eds.) New York: ASME, 1987

    Google Scholar 

  7. Mirsky, L.: An introduction to linear algebra. New York: Dover 1983

    Google Scholar 

  8. Rudnicki, J. W.; Rice, J. R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 10 (1962) 1–16

    Google Scholar 

  9. Zienkiewicz, O. C.; Taylor, R. L.: The finite element method (4th ed.). London: McGraw-Hill 1989

    Google Scholar 

  10. Cook, R. D.; Malkus, D. S.: Plesha, M. E.: Concepts and applications of the finite element analysis (3rd ed.). New York: John Wiley & Sons 1989

    Google Scholar 

  11. Doherty, W. P.; Wilson, E. L.; Taylor, R. L.: Stress analysis of axissymmetric Solids utilizing higher order quadrilateral finite elements. SESM-Report 69-3, University of California Berkely, 1969

  12. Wilson, E. L.; Taylor, R. L.; Doherty, W. P.; Ghaboussi, J.: Incompatible displacement models. In: Fenves, S. J. et al. (eds.) Numerical and computer models in structural mechanics, pp. 43–57. New York: Academic Press 1973

    Google Scholar 

  13. Taylor, R. L.; Beresford, P. J.; Wilson, E. L.: A non-conforming element for stress analysis. Int. J. Num. Meth. Engr. 10 (1976) 1211–1219

    Google Scholar 

  14. Willam, K. J.: Finite element analysis of cellular structures. Ph. D.-Dissertation., University of California, Berkeley, 1969

    Google Scholar 

  15. Argyris, J. H.; Willam, K. J.: Some considerations for the evaluation of finite element models. Nucl. Engr. Design, 28 (1974) 76–96

    Google Scholar 

  16. MacNeal, R. H.: A simple quadrilateral shell element. Computers and structures 8 (1978) 175–183

    Google Scholar 

  17. Malkus, D. S.; Hughes, T. J. R.: Mixed finite element methods-Reduced and selective integration techniques: a unification of concepts. Comp. Meth. Appl. Mech. Engr. 15 (1978) 63–81

    Google Scholar 

  18. Simo, J. C.; Rifai, M. S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Engr. 29 (1990) 1595–1638

    Google Scholar 

  19. Pian, T. H. H.; Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Num. Meth. Engr. 20 (1985) 1658–1695

    Google Scholar 

  20. Belytschko, T.; Bachrach, W. E.: Efficient implementation of quadrilaterals, with high coarse-mesh accuracy. Comp. Meth. Appl. Mech. Engr. 23 (1986) 323–331

    Google Scholar 

  21. de Borst, R.: Numerical methods for Bifurcation, analysis in geomechanics. Ing. Arch. 59 (1989) 160–169

    Google Scholar 

  22. Ortiz, M.: Private communication (1990)

  23. Simo, J. C.: A class of mixed assumed strain methods and the method of incompatible modes (lecture at workshop on Computational Methods in Solid Mechanics, Oberwolfach, Oct 29–Nov 4, 1989)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmann, P., Willam, K. Finite elements for capturing localized failure. Arch. Appl. Mech. 61, 259–275 (1991). https://doi.org/10.1007/BF00794351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00794351

Keywords

Navigation