Skip to main content
Log in

Monoclonal antibodies to the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum identify polymorphic forms of the enzyme and indicate the presence in the enzyme of a classical high-affinity Ca2+ binding site

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, K. (1948).Biochem. J. 43 271–279.

    Google Scholar 

  • Bennick, A. (1975).Biochem. J. 145 557–567.

    Google Scholar 

  • Bennick, A. (1977).Biochem. J. 163 229–239.

    Google Scholar 

  • Bennick, A., McLaughlin, A. C., Grey, A. A., and Madapallimattan, G. (1981).J. Biol. Chem. 256 4741–4746.

    Google Scholar 

  • Blitz, A. L., Fine, R. E., and Toselli, P. A. (1977).J. Cell. Biol. 75 135–147.

    Google Scholar 

  • Boland, R., Martonosi, A., and Tillack, T. W. (1974).J. Biol. Chem. 249 612–623.

    Google Scholar 

  • Byers, B. M., and Kay, C. M. (1982).Biochemistry. 21 229–233.

    Google Scholar 

  • Bygrave, F. L. (1978).Biochem. J. 170 87–91.

    Google Scholar 

  • Campbell, K. P., and MacLennan, D. H. (1981).J. Biol. Chem. 256 4626–4632.

    Google Scholar 

  • Campbell, K. P., MacLennan, D. H., and Jorgensen, A. O. (1983).J. Biol. Chem. 258 11267–11273.

    Google Scholar 

  • Carsten, M. E., and Miller, J. D. (1980).Arch. Biochem. Biophys. 204 404–412.

    Google Scholar 

  • Dawson, A. P. (1982).Biochem. J. 206 73–79.

    Google Scholar 

  • Dean, W. L., and Sullivan, D. M. (1982).J. Biol. Chem. 257 14390–14394.

    Google Scholar 

  • DeFoor, P. H., Levitsky, D., Biryukova, T., and Fleischer, S. (1980).Arch. Biochem. Biophys. 200 196–205.

    Google Scholar 

  • Engvall, E., and Perlmann, P. P. (1971).Immunochemistry 8 871–874.

    Google Scholar 

  • Fambrough, D. M., and Bayne, E. K. (1983).J. Biol. Chem. 258 3926–3935.

    Google Scholar 

  • Friedlander, E. Y., and Norman, A. W. (1980).Methods Enzymol. 67 504–508.

    Google Scholar 

  • Grabarek, Z., Drabikowski, W., Leavis, P. C., Rosenfeld, S. S., and Gergely, J. (1981).J. Biol. Chem. 256 13121–13127.

    Google Scholar 

  • Habener, J. F., Rosenblatt, M., Dee, P. C., and Potts, J. T., Jr. (1979).J. Biol. Chem. 254 10596–10599.

    Google Scholar 

  • Haiech, J., Devancourt, J., Pechere, J. F., and Demaille, J. (1979).Biochimie 61 583–587.

    Google Scholar 

  • Haiech, F., Klee, C. B., and Demaille, Y. G. (1981).Biochemistry 20 3890–3897.

    Google Scholar 

  • Heilmann, C., Brdiczka, D., Nickel, E., and Pette, D. (1977).Eur. J. Biochem. 81 211–222.

    Google Scholar 

  • Heilmann, C., Spamer, C., and Gerok, W. (1983).Biochem. Biophys. Res. Commun. 114 584–592.

    Google Scholar 

  • Jones, L. R., Besch, H. R., Jr., Fleming, J. W., McConnaughey, M. M., and Watanabe A. M. (1979).J. Biol. Chem. 254 530–539.

    Google Scholar 

  • Jorgensen, A. O., Kalnins, V. I., and MacLennan, D. H. (1979).J. Cell Biol. 80 372–384.

    Google Scholar 

  • Jorgensen, A. O., Shen, A. C.-Y., MacLennan, D. H., and Tokuyasu, K. T. (1982a).J. Cell Biol. 92 409–416.

    Google Scholar 

  • Jorgensen, A. O., Shen, A. C.-Y., Daly, P., and MacLennan, D. H. (1982b).J. Cell Biol. 93 883–892.

    Google Scholar 

  • Kaser-Glanzmann, R., Jakabova, M., George, H. N., and Luscher, E. F. (1977).Biochim. Biophys. Acta 466 429–440.

    Google Scholar 

  • Kato, J., and Tonomura, Y. (1977).J. Biochem. 81 207–213.

    Google Scholar 

  • Kawasaki, Y., and Van Eerd, J. P. (1972).Biochem. Biophys. Res. Commun. 49 898–905.

    Google Scholar 

  • Keller, C. H., Olwin, B. B., LaPorte, D. C., and Storm, D. R. (1982).Biochemistry 21 156–162.

    Google Scholar 

  • Klee, C. B., Crouch, T. H., and Krinks, M. H. (1979).Proc. Natl. Acad. Sci. USA 76 6270–6274.

    Google Scholar 

  • Klee, C. B., Crouch, T. H., and Richman, P. G. (1980).Annu. Rev. Biochem. 49 488–515.

    Google Scholar 

  • Kohler, G. (1980).Hybridoma Techniques. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Korn, E. (1982).Physiol. Rev. 62 672–737.

    Google Scholar 

  • Kretsinger, R. H., and Nockolds, C. E. (1973).J. Biol. Chem. 248 3313–3326.

    Google Scholar 

  • Labourdette, G., and Marks, A. (1975).Eur. J. Biochem. 58 73–79.

    Google Scholar 

  • Laemmli, U. K. (1970).Nature (London) 227 680–685.

    Google Scholar 

  • LaPorte, C. D., Wierman, B. M., and Storm, D. R. (1980).Biochemistry 19 3814–3819.

    Google Scholar 

  • Leavis, P. C., Rosenfeld, S. S., Gergely, J., Grabarek, Z., and Drabikowski, W. (1978).J. Biol. Chem. 253 5452–5459.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193 265–275.

    Google Scholar 

  • MacLennan, D. H. (1970).J. Biol. Chem. 245 4508–4518.

    Google Scholar 

  • MacLennan, D. H., and Holland, P. C. (1975).Annu. Rev. Biophys. Bioeng. 4 377–404.

    Google Scholar 

  • MacLennan, D. H., and Wong, P. T. S. (1971).Proc. Natl. Acad. Sci. USA 68 1231–1235.

    Google Scholar 

  • MacLennan, D. H., Campbell, K. P., and Reithmeier, R. A. F. (1983). “Calsequestrin,” inCalcium and Cell Function (Cheung, W. Y., ed.), Vol. IV, Academic Press, New York, pp. 151–173.

    Google Scholar 

  • Marks, A., Law, J., Mahoney, J. B., and Baumal, R. (1983).J. Neurochem. 41 107–112.

    Google Scholar 

  • McCubbin, W. D., and Kay, C. M. (1973).Biochemistry 12 4228–4232.

    Google Scholar 

  • Menashi, S., Weintroub, H., and Crawford, N. (1981).J. Biol. Chem. 256 4095–4104.

    Google Scholar 

  • Moore, P. B., and Kraus-Friedmann, N. (1983).Biochem. J. 214 69–75.

    Google Scholar 

  • Moore, L., Chen, T., Knapp, R. H., Jr., and Landon, E. J. (1975).J. Biol. Chem. 250 4562–4568.

    Google Scholar 

  • Newton, D. L., Oldewurtel, M. D., Krinks, M., Shiloach, J., and Klee, C. B. (1984).J. Biol. Chem. 259 4419–4426.

    Google Scholar 

  • Niggli, V., Penniston, J. T., and Carafoli, E. (1979).J. Biol. Chem. 254 9955–9958.

    Google Scholar 

  • Ohnoki, S., and Martonosi, A. (1980).Comp. Biochem. Physiol. 65B 181–189.

    Google Scholar 

  • O'Neill, J. D. T., Dorrington, K. J., Kells, D. I. C., and Hoffman, T. (1982).Biochem. J. 207 389–396.

    Google Scholar 

  • Potter, J. D., Seidel, J. C., Leavis, P. C., Lehrer, S. S., and Gergely, J. (1976).J. Biol. Chem. 251 7551–7556.

    Google Scholar 

  • Raeymekers, L., Agostini, B., and Hasselbach, W. (1980).Histochemistry 65 121–129.

    Google Scholar 

  • Shulman, M., Wilde, C. D., and Kohler, G. (1978).Nature London 276 269–270.

    Google Scholar 

  • Stewart, P. S., MacLennan, D. H., and Shamoo, A. E. (1976).J. Biol. Chem. 251 712–713.

    Google Scholar 

  • Tanaka, T., and Hidaka, H. (1980).J. Biol. Chem. 255 11078–11080.

    Google Scholar 

  • Teo, T. S., Wong, T. H., and Wong, J. H. (1973).J. Biol. Chem. 248 588–595.

    Google Scholar 

  • Towbin, H., Staehelin, T., and Gordon, J. (1979).Proc. Natl. Acad. Sci. USA 76 4350–4354.

    Google Scholar 

  • Van Eerd, J. P., and Kawasaki, Y. (1972).Biochem. Biophys. Res. Commun. 47 859–865.

    Google Scholar 

  • Van Winkle, W. B., Pitts, B. J., and Entman, M. L. (1978).J. Biol. Chem. 253 8671–8673.

    Google Scholar 

  • Walsh, M., Stevens, F. C., Oikawa, K., and Kay, C. M. (1979).Can. J. Biochem. 57 267–278.

    Google Scholar 

  • Weber, K., and Osborn, M. (1969).J. Biol. Chem. 244 4406–4412.

    Google Scholar 

  • Wuytack, F., Landon, E., Fleischer, S., and Hardman, J. B. (1978).Biochim. Biophys. Acta 540 253–269.

    Google Scholar 

  • Wuytack, F., DeSchutter, G., and Casteels, R. (1981).FEBS Lett. 129 297–300.

    Google Scholar 

  • Zubrzycka-Gaarn, E., Korczak, B., and Osinska, H. (1979).FEBS Lett. 107 355–359.

    Google Scholar 

  • Zubrzycka-Gaarn, E., Michalak, M., Kosk-Kosicka, D., and Sarzala, M. G. (1979).Eur. J. Biochem. 93 113–121.

    Google Scholar 

  • Zubrzycka-Gaarn, E., Korczak, B., Osinska, H., and Sarzala, M. G. (1982).J. Muscle Res. Cell Motil. 3 191–212.

    Google Scholar 

  • Zubrzycka-Gaarn, E., Campbell, K. P., MacLennan, D. H., and Jorgensen, A. O. (1983).J. Biol. Chem. 258 4576–4581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Dr. David E. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubrzycka-Gaarn, E., MacDonald, G., Phillips, L. et al. Monoclonal antibodies to the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum identify polymorphic forms of the enzyme and indicate the presence in the enzyme of a classical high-affinity Ca2+ binding site. J Bioenerg Biomembr 16, 441–464 (1984). https://doi.org/10.1007/BF00743238

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743238

Key Words