Skip to main content
Log in

Fast ion conduction materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A brief phenomenological introduction to the important physical parameters involved in ionic conduction in solids is followed by order of magnitude estimates of these quantities for materials which can be considered to be fast ion conductors. Experimental techniques are outlined, and a comprehensive compilation of currently available data on fast ion conductors is presented. The conductivity and diffusion data are coupled with additional criteria to indicate broad classes of materials which may show enhanced ion conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Huggins, in “Diffusion in Solids: Recent Developments”, edited by A.S. Nowick and J.J. Burton (Academic Press, London, 1975).

    Google Scholar 

  2. B. C. H. Steele andG. J. Dudley, in “International Review of Science: Inorganic Chemistry Series Two”, Vol. 10, Solid State Chemistry, edited by L.E.J. Roberts (Butterworths, London, 1975).

    Google Scholar 

  3. J. Hladik, “Physics of Electrolytes”, Vols. 1 and 2 (Academic Press, New York, 1975).

    Google Scholar 

  4. W. Van Gool, Ed. “Fast Ion Transport in Solids” (Plenum, New York, 1973).

    Google Scholar 

  5. Idem, Rev. Mater. Sci. 4 (1974) 311.

    Google Scholar 

  6. M. S. Whittingham andR. A. Huggins,J. Chem. Phys. 54 (1971) 414.

    Google Scholar 

  7. Idem, J. Electrochem. Soc. 118 (1971) 1.

    Google Scholar 

  8. D. S. Demott andP. Hancock,Proc. Brit. Ceram. Soc. 19 (1971) 193.

    Google Scholar 

  9. R. D. Armstrong, T. Dickinson andR. Whitfield,J. Electroanal. Chem. 39 (1972) 257.

    Google Scholar 

  10. R. W. Powers andS. P. Mitoff,J. Electrochem. Soc. 122 (1975) 226.

    Google Scholar 

  11. J. T. Kummer,Progr. Solid State Chem. 7 (1972) 141.

    Google Scholar 

  12. Y. Y. Yao andJ. T. Kummer,J. Inor. Nucl. Chem. 29 (1967) 2453.

    Google Scholar 

  13. J. Singer, H. E. Kautz, W. L. Fielder andJ. S. Fordyce, in [4], p. 653.

    Google Scholar 

  14. A. K. Jonscher,Nature 253 (1975) 717.

    Google Scholar 

  15. A. Imai andM. Harata,Jap. J. of Appl. Phys. 11 (1972) 180.

    Google Scholar 

  16. S. P. Mitoff andR. T. Charles,J. Appl. Phys. 43 (1972) 927.

    Google Scholar 

  17. J. W. Patterson, E. C. Bogren andR. A. Rapp,J. Electrochem. Soc. 114 (1967) 752.

    Google Scholar 

  18. A. V. Joshi andJ. B. Wagner,ibid,122 (1975) 1071.

    Google Scholar 

  19. G. C. Farrington,ibid,121 (1974) 1314.

    Google Scholar 

  20. T. G. Stoebe andR. A. Huggins,J. Mater. Sci. 1 (1966) 117.

    Google Scholar 

  21. I. Chung, PhD Thesis, State University of New York 1974: Microfilm 75-2341;I. Chung andH. Story,J. Chem. Phys. 63 (1975) 4903.

  22. J. P. Boilot, L. Zuppiroli, G. Delplanque andL. Jerome,Phil Mag. 32 (1975) 343;D. Jerome andJ. P. Boilot,J. Phys. 35 (1974) L129.

    Google Scholar 

  23. J. Antoine, D. Vivien, J. Livage, J. Thery andR. Collongues,Mat. Res. Bull. 10 (1975) 865.

    Google Scholar 

  24. W. L. Roth,Trans. Amer. Cryst. Assoc. 11 (1975) 51.

    Google Scholar 

  25. C. A. Beevers andM. A. S. Ross,Z. Kristallogr. 97 (1937) 59.

    Google Scholar 

  26. W. L. Roth,J. Solid State Chem. 4 (1972) 60.

    Google Scholar 

  27. J. S. Kasper andK. W. Browall,ibid.,13 (1975) 49.

    Google Scholar 

  28. S. J. Allen andJ. P. Remeika,Phys. Rev. Letters 33 (1974) 1478.

    Google Scholar 

  29. R. D. Armstrong, P. M. A. Sherwood andR. A. Wiggins,Spectrochimica Acta 30A (1974) 1213.

    Google Scholar 

  30. R. T. Harley, W. Hayes, A. J. Rushworth andJ. F. Ryan,J. Phys. C. 8 (1975) L530.

    Google Scholar 

  31. S. Chandra andV. K. Mohabey,J. Phys. D8 (1975) 576.

    Google Scholar 

  32. K. S. Cole andR. H. Cole,J. Chem. Phys. 9 (1941) 341.

    Google Scholar 

  33. J. E. Bauerle,J. Phys. Chem. Solids 30 (1969) 2657.

    Google Scholar 

  34. E. Schouler, M. Kleitz andC. Deportes,Chem. Phys. 70 (1973) 923, 1309.

    Google Scholar 

  35. R. D. Armstrong et al., J. Electroanal. Chem. 53 (1974) 389.

    Google Scholar 

  36. R. D. Armstrong andK. Taylor,ibid.,63 (1975) 9.

    Google Scholar 

  37. R. A. Huggins, Stanford Res. Rept. No AD-782 365 (1974).

  38. R. A. Huggins, Stanford Res. Rept. No AD-A012 098 (1975).

  39. J. R. Macdonald,J. Chem. Phys. 61 (1974) 3977.

    Google Scholar 

  40. R. J. Friauf, [3], p. 1103.

    Google Scholar 

  41. H. Rickert, [4]“, p. 33.

    Google Scholar 

  42. R. D. Armstrong, R. S. Bulmer andT. Dickinson, [4]“, p. 269.

    Google Scholar 

  43. K. W. Browall andJ. S. Kasper,J. Solid State Chem. 15 (1975) 54.

    Google Scholar 

  44. B. B. Owens, [4]“, p. 593.

    Google Scholar 

  45. S. Geller, in [4]“, p. 607.

    Google Scholar 

  46. J. N. Bradley andP. D. Greene,Trans. Farad. Soc. 63 (Part 10) (1967) 2516 and reference therein.

    Google Scholar 

  47. C. C. Liang, in [4]“, p. 19.

    Google Scholar 

  48. D. Kunze, in [4]“, p. 405.

    Google Scholar 

  49. T. Takahashi, S. Ikeda andO. Yamamoto,J. Electrochem. Soc. 119 (1972) 477.

    Google Scholar 

  50. Idem, ibid.,120 (1973) 647.

    Google Scholar 

  51. S. Geller, andP. M. Skarstad,Phys. Rev. Letters 33 (25) (1974) 1484.

    Google Scholar 

  52. S. Geller, P. M. Skarstad andS. A. Wilber,J. Electrochem. Soc. 122 (1975) 322.

    Google Scholar 

  53. K. Shahi andS. Chandra,J. Phys. C. 8 (1975) 2255.

    Google Scholar 

  54. B. Scrosati, F. Papaleo andG. Pistoia,J. Electrochem. Soc. 122 (1975) 339.

    Google Scholar 

  55. W. Van Gool, in [4]“, p. 201.

    Google Scholar 

  56. L. W. Strock,J. Phys. Chem. B25 (1934) 441;J. Phys. Chem. B31 (1935) 132.

    Google Scholar 

  57. J. H. Christie, B. B. Owens andG. T. Tredeman,Inorg. Chem. 14 (1975) 1423.

    Google Scholar 

  58. R. G. Linford, J. M. Pollock andC. F. Randell,Nature 256 (1975) 398.

    Google Scholar 

  59. A. F. Sammels, J. Z. Guogoutas andB. B. Owens,J. Electrochem. Soc. 122 (1975) 1291.

    Google Scholar 

  60. T. H. Estell andS. N. Flengass,Chem. Rev. 70 (1970) 339.

    Google Scholar 

  61. T. Takahashi, H. Iwahara andJ. Nagai,J. Appl. Electrochem. 2 (1972) 97.

    Google Scholar 

  62. T. Takahashi andH. Iwahara,ibid.,3 (1973) 65.

    Google Scholar 

  63. T. Takahashi, H. Iwahara andT. Arao,ibid.,5 (1976) 187.

    Google Scholar 

  64. T. Takahashi, T. Eseka andH. Iwahara,ibid.,5 (1975) 197.

    Google Scholar 

  65. M. Kleitz, in [4]“, p. 607.

    Google Scholar 

  66. W. Baukel, “From Electrocatalysis to Fuel Cells”, edited by G. Stansted, (University of Washington Press, 1971) p. 345.

  67. C. E. Derrington andM. O'Keeffe,Solid Commun. 15 (1974) 1175.

    Google Scholar 

  68. C. E. Derrington, A. Lindner andM. O.- Keeffe,J. Solid State Chem. 15 (1975) 171.

    Google Scholar 

  69. German Patent Application 2401 497.

  70. J. Koryta, “Ion Selective electrodes” (Cambridge University Press, 1975).

  71. L. E. Nagel andM. O'Keeffe, in [4]“, p. 165.

    Google Scholar 

  72. J. Bruinink,ibid.“, p. 157.

    Google Scholar 

  73. A. F. Wells, “Structural Inorganic Chemistry”, 3rd Edn. (Clarendon Press, Oxford, 1962) p. 305.

    Google Scholar 

  74. T. Dosdale, D. E. C. Corbridge andR. J. Brook, private communication (1975).

  75. P. G. Dickens, D. J. Murphy andT. K. Halstead,J. Solid State Chem. 6 (1973) 370.

    Google Scholar 

  76. W. Van Gool andP. H. Bottelberghs,ibid.,7 (1973) 59.

    Google Scholar 

  77. H. Sato andR. Kikuchi,J. Chem. Phys. 55 (1971) 677.

    Google Scholar 

  78. M. J. Rice andW. L. Roth,J. Solid State Chem. 4 (1972) 294.

    Google Scholar 

  79. D. R. Flinn, N. McDonough, K. H. Stern andR. Rice,Electrochem. Soc. Ext. Abs. 75–1, p. 23.

  80. L. J. Miles andI. Wynn Jones,Proc. Brit. Ceram Soc. 19 (1971) 161.

    Google Scholar 

  81. Idem, ibid.,19 (1971) 179.

    Google Scholar 

  82. R. D. Armstrong, T. Dickinson andJ. Turner,J. Electrochem. Soc. 118 (1971) 1135.

    Google Scholar 

  83. R. D. Armstrong et al., Electrochim Acta 19 (1974) 187.

    Google Scholar 

  84. R. D. Armstrong, T. Dickinson andP. M. Willis,J. Electroanal. Chem. and Interfacial Electrochem. 53 (1974) 389.

    Google Scholar 

  85. L. Hsueh andD. N. Bennion,J. Electrochem. Soc. 118 (1971) 1128.

    Google Scholar 

  86. R. A. Huggins, Stanford University Technical Reports AD 773972, 782365.

  87. B. V. Joqlekar, P. S. Nicholson andW. W. Smeltzer,Canad. Met. Q. 12 (1973) 155.

    Google Scholar 

  88. H. McGowan, Ph.D. Thesis, State University of New Jersey, USA (1973).

    Google Scholar 

  89. A. D. Morrison, R. W. Stormont andF. H. Cocks,J. Amer. Ceram. Soc. 58 (1975) 41.

    Google Scholar 

  90. R. W. Powers andS. P. Mitoff,J. Electrochem. Soc. 122 (1975) 226.

    Google Scholar 

  91. R. H. Radzilowski, Y. F. Yao andJ. T. Kummer,J. Appl. Phys. 40 (1969) 4716.

    Google Scholar 

  92. R. H. Richman andG. J. Tennenhouse,J. Amer. Ceram. Soc. 58 (1975) 63.

    Google Scholar 

  93. R. Stevens,J. Mater. Sci. 9 (1974) 801.

    Google Scholar 

  94. Idem, ibid.,9 (1974) 934.

    Google Scholar 

  95. C. T. H. Stoddart andE. D. Hondros,J. Brit. Ceram. Soc.,73 (1974) 61.

    Google Scholar 

  96. N. Weber,Energy Conversion 14 (1974) 1.

    Google Scholar 

  97. M. S. Whittingham andR. A. Huggins, Nat. Bur. of Stand. Special Publ. 364. Sol St. Chem. Proc. of 5th Res. Symp. (1972).

  98. R. T. Chicotka,Electrochem. Soc. Ext. Abs. 75-1, p. 16.

  99. L. M. Foster andJ. E. Scardefield,ibid., 75-1, p. 14.

  100. G. J. Dudley andB. C. H. Steele, private communication (1975).

  101. J. B. Goodenough, H. Y-P. Hong andJ. A. Kafalas,Mat. Res. Bull. 11 (1976) 203.

    Google Scholar 

  102. H. Y-P. Hong, J. A. Kafalas andJ. B. Goodenough, Lincoln Lab (MIT), Sol. State Res. Rep. (1974).

  103. A. R. West,J. Appl. Electrochem. 3 (1973) 327.

    Google Scholar 

  104. R. A. Huggins, “Solid Electrolyte Battery Materials”, Report AD-A012 098 (1975).

  105. I. D. Raistrick, L. A. Nagel andR. A. Huggins,Electrochem. Soc. Est. Abs. 75-1, p. 50.

  106. R. T. Johnson, Jr., B. Morosin, M. L. Knotek andR. M. Biefeld,Phys. Letters 54A (1975) 403.

    Google Scholar 

  107. R. A. Huggins, Stanford University Tech. Rep. AD 773 972, (1973).

  108. G. C. Farrington,Electrochem. Soc. Ext. Abs. 75–1, p. 48.

  109. C. R. Schlaikjer, andC. C. Liang, in [4]“, p. 685.

    Google Scholar 

  110. A. Kvist,Z. Naturforsch. 22a (1967) 208.

    Google Scholar 

  111. A. M. Josefson andA. Kvist,ibid.,24a (1969) 466.

    Google Scholar 

  112. M. S. Whittingham andR. A. Huggins, in [4]“, p. 645.

    Google Scholar 

  113. T. K. Halstead, W. U. Benech, R. D. Gulliver II. andR. A. Huggins,J. Chem. Phys. 58 (1973) 3530.

    Google Scholar 

  114. S. P. Mitoff in [4]“, p. 415.

    Google Scholar 

  115. K. O. Hever,J. Electrochem. Soc. 115 (1968) 826.

    Google Scholar 

  116. R. S. Roth, H. S. Parker, W. S. Brower andJ. L. Waring, in [4]“, p. 217.

    Google Scholar 

  117. W. G. Mumme andA. F. Reid,Acta Cryst. B24 (1968) 625.

    Google Scholar 

  118. J. B. Goodenough andJ. A. Kafalas,J. Sol. State Chem. 6 (1973) 493.

    Google Scholar 

  119. W. L. Roth et al. Final Rep. N74-26498 (NASA, CR-124610) (April 1974).

  120. M. B. Armand, in [4]“, p. 665.

    Google Scholar 

  121. I. Ravein, private communication (1974).

  122. K. H. Stern, in [4]“, p. 393.

    Google Scholar 

  123. L. V. C. Rees,ibid.“, p. 301.

    Google Scholar 

  124. B. Head, A. Lunden andK. Schroeder,Proc. IECEC (1975) 613.

  125. A. Abragam, “The Principles of Nuclear Magnetism” (Clarendon Press, Oxford, 1961) p. 327.

    Google Scholar 

  126. A. D. Leclaire, in [4]“, p. 51.

    Google Scholar 

  127. W. L. Roth, General Electric Tech. Inf. Series, Schenectady, N.Y. Rep. No. 74CRD054 (March 1974).

  128. R. S. Roth, H. S. Parker andW. S. Brower,Mat. Res. Bull. 8 (1973) 327.

    Google Scholar 

  129. P. G. Dickens andP. J. Wiseman, in “International Review of Science: Inorganic Chemistry Series Two”, Vol. 10, Solid State Chemistry, edited by L.E.J. Roberts (Butterworths, London, 1975).

    Google Scholar 

  130. D. B. McWhan, S. M. Sahpiro, J. P. Remeika andG. Shirane,J. Phys. C. 8 (1975) L487.

    Google Scholar 

  131. H. Fuess, K. Funke andJ. Kalus,Phys. Stat. Sol. (a) 32 (1975) 101.

    Google Scholar 

  132. G. Eckold, K. Funke, J. Kalus andR. E. Lechner,Phys. Letters 55A (1975) 125.

    Google Scholar 

  133. T. Kodama andG. Muto,J. Solid State Chem. 17 (1976) 61.

    Google Scholar 

  134. D. B. McWhan, S. J. Allen, Jun., J. P. Remeika andP. D. Dernier,Phys. Rev. Letters 35 (1975) 953.

    Google Scholar 

  135. M. Nagao andT. Kaneda,Phys. Rev. B11 (1975) 2711.

    Google Scholar 

  136. J. C. Wang, M. Gaffari andSang-Il Choi,J. Chem. Phys. 63 (1975) 772.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcgeehin, P., Hooper, A. Fast ion conduction materials. J Mater Sci 12, 1–27 (1977). https://doi.org/10.1007/BF00738467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738467

Keywords

Navigation