Skip to main content
Log in

Measurement of quantum states and the Wigner function

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In quantum mechanics, the state of an individual particle (or system) is unobservable, i.e., it cannot be determined experimentally, even in principle. However, the notion of “measuring a state” is meaningful if it refers to anensemble of similarly prepared particles, i.e., the question may be addressed: Is it possible to determine experimentally the state operator (density matrix) into which a given preparation procedure puts particles. After reviewing the previous work on this problem, we give simple procedures, in the line of Lamb's operational interpretation of quantum mechanics, for measuring a translational state operator (whether pure or mixed), via its Wigner function. These procedures closely parallel methods that might be used in classical mechanics to determine a true phase space probability distribution; thus, the Wigner function simulates such a distribution not only formally, but operationally also.

There is no way to determine what the wave function (or state vector) of a system is—if arbitrarily given, there is no way to “measure” its wave function. Clearly, such a measurement would have to result in afunction of several variables, not in a relatively small set ofnumbers .... In order to verify the [quantum] theory in its generality, at least a succession of two measurements are needed. There is in general no way to determine the original state of the system, but having produced a definite state by a first measurement, the probabilities of the outcomes of a second measurement are then given by the theory.

E. P. Wigner(1)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Wigner, inQuantum Optics, Experimental Gravitation and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), pp. 44 and 47.

    Google Scholar 

  2. E. C. Kemble,The Fundamental Principles of Quantum Mechanics (Dover, New York, 1937), p. 71.

    Google Scholar 

  3. W. Gale, E. Guth, and G. T. Trammel,Phys. Rev. 165, 1434 (1968).

    Google Scholar 

  4. G. T. Trammel,Phys. Tod. 22, 9 (1969).

    Google Scholar 

  5. B. d'Espagnat,Conceptual Foundations of Quantum Mechanics, 2nd edn. (W. A. Benjamin, Reading, Massachusetts, 1976), Sect. 7.1.

    Google Scholar 

  6. W. Pauli,General Principles of Quantum Mechanics (Springer, Berlin, 1980), p. 17.

    Google Scholar 

  7. W. E. Lamb, Jr.,Phys. Tod. 22, 23 (1969).

    Google Scholar 

  8. A. Royer,Phys. Rev. Lett. 55, 2745 (1985).

    Google Scholar 

  9. E. P. Wigner,Phys. Rev. 40, 749 (1932).

    Google Scholar 

  10. S. R. de Groot and L. G. Suttorp,Foundations of Electrodynamics (North-Holland, Amsterdam, 1972), Appendix to Chap. VI.

    Google Scholar 

  11. S. R. de Groot,La Transformation de Weyl et la Fonction de Wigner (Les Presses de l'Université de Montréal, Montréal, 1974).

    Google Scholar 

  12. V. I. Tatarskii,Sov. Phys. Usp. 26, 311 (1983).

    Google Scholar 

  13. R. F. O'Connell,Found. Phys. 13, 83 (1983).

    Google Scholar 

  14. N. L. Balazs and B. K. Jennings,Phys. Rep. 104, 347 (1984).

    Google Scholar 

  15. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner,Phys. Rep. 106, 121 (1984).

    Google Scholar 

  16. U. Fano, inLectures on the Many-Body Problem, Vol. 2, E. R. Caianiello, ed. (Academic, New York, 1964).

    Google Scholar 

  17. I. Prigogine, C. George, C. Henin, and L. Rosenfeld,Chem. Scripta 4, 5 (1973).

    Google Scholar 

  18. P. A. M. Dirac,The Principles of Quantum Mechanics, 4th end. (Oxford University Press, Oxford, 1958).

    Google Scholar 

  19. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  20. J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Google Scholar 

  21. U. Fano,Rev. Mod. Phys. 29, 74 (1957).

    Google Scholar 

  22. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  23. C. D. Cantrell and M. O. Scully,Phys. Rep. 43, 499 (1978).

    Google Scholar 

  24. M. O. Scully, R. Shea, and J. D. McCullen,Phys. Rep. 43, 486 (1978).

    Google Scholar 

  25. R. H. Dicke,Am. J. Phys. 49, 925 (1981).

    Google Scholar 

  26. D. Bohm,Phys. Rev. 85, 166 (1952).

    Google Scholar 

  27. B. R. Mollow,Phys. Rev. 162, 1256 (1967).

    Google Scholar 

  28. A. Grossmann,Commun. Math. Phys. 48, 191 (1976).

    Google Scholar 

  29. A. Royer,Phys. Rev. A 15, 449 (1977).

    Google Scholar 

  30. R. G. Glauber,Phys. Rev. 131, 2766 (1963).

    Google Scholar 

  31. K. Wodkiewicz,Phys. Rev. Lett. 52, 1064 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer, A. Measurement of quantum states and the Wigner function. Found Phys 19, 3–32 (1989). https://doi.org/10.1007/BF00737764

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00737764

Keywords

Navigation