Skip to main content
Log in

Siliceous microfossil succession in the recent history of two basins in Lake Baikal, Siberia

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

As part of the international cooperative Baikal Drilling Project, siliceous microfossil assemblage succession was analyzed in two short (∼ 30-cm) sediment cores from Lake Baikal. One core was recovered from the north basin (Core 324, 55°15′N, 109°30′E), a second from between the central and southern basins (Core 316, 52°28′N, 106°5′E). The northern core had higher amounts of biogenic silica (40 g SiO2 per 100 g dry weight sediment) compared to the southern core, and increased deposition in the more recent sediments. Weight percent biogenic silica was lower in the southern core, ranging from approximately 20–30 g SiO2 per 100 g dry weight sediment throughout the entire core. Trends in absolute microfossil abundance mirror those of biogenic silica, with generally greater abundance in the northern core (86–275×106 microfossils g−1 dry sediment) compared to the southern core (94–163×106 microfossils g−1 dry sediment).

Cluster analyses using relative abundance of the dominant diatom and chrysophyte taxa revealed four zones of microfossil succession in each core. Microfossil assemblage succession in the north basin may be reflecting shifts in nutrient supply and cycling driven by climatic changes. The most recent sediments in the northern basin (Zone 1,c. 1890's–1991 A.D.) were characterized by an increased abundance ofAulacoseira baicalensis andAulacoseira ‘spore’. Zone 3 (c. 1630's–1830's A.D.) was dominated by the endemicCyclotella spp. and reduced abundance of theAulacoseira spp. Zone 3 corresponds approximately to the Little Ice Age, a cooler climatic period. The microfossil assemblages between Zones 1 and 3 (Zone 2,c. 1830's–1890's A.D.) and below Zone 3 (Zone 4,c. 830's–1430's A.D.) are similar to one another suggesting they represent transitional intervals between warm and cold periods. Southern basin sediments record similar changes in the endemic taxa. However, the increased abundance of non-endemic planktonic taxa (e.g.Stephanodiscus binderanus, Synedra acus, Cyclostephanos dubius) during two periods in recent history (post World War II and late 1700's) suggests evidence for anthropogenic induced changes in southern Lake Baikal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battarbee, R. W., 1973. A new method for estimating absolute microfossil numbers with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.

    Google Scholar 

  • Belt, D., 1992. The World's Great Lake. National Geographic 181: 2–39.

    Google Scholar 

  • Bondarenko, N. A., N. E. Guselnikova, S. S. Vorobyeva & N. F. Logacheva, 1993. Species composition of planktonic diatom algae of Lake Baikal and biology of dominant species. In Fifth Workshop on Diatom Algae: Diatom algae as indicators of the changes of climate and environment. Russian Academy of Sciences, Siberian Division, Irkutsk: 72–75.

    Google Scholar 

  • Bradbury, J. P. & K. V. Dieterich-Rurup, 1993. Holocene diatom paleolimnology of Elk Lake, Minnesota. In J. P. Bradbury & W. E. Dean (eds), Elk Lake, Minnesota: evidence for rapid climate change in the North-Central United States. Geol. Soc. Amer. Spec. Paper No. 276. Geol. Soc. Amer., Boulder, Colorado: 215–237.

    Google Scholar 

  • Bradbury, J. P., Ye. V. Bezrukova, G. P. Chernyaeva, S. M. Colman, G. Khursevich, J. W. King & Ye. E. Likoshway, 1994. A synthesis of post-glacial diatom records from Lake Baikal. J. Paleolim. 10: 213–252.

    Google Scholar 

  • Carney, H., 1982. Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63: 1814–1826.

    Google Scholar 

  • Chernyaeva, G. P., 1970. Diatoms in the bottom sediments of northern Lake Baikal. In Bottom Deposits of Baikal. Academy of Sciences, Moscow: 144–160. (in Russian)

    Google Scholar 

  • Conley, D. J. & C. L. Schelske, 1993. Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Can. J. Fish. aquat. Sci. 50: 296–302.

    Google Scholar 

  • Edgington, D. N., J. V. Klump, J. A. Robbins, Y. S. Kusner, V. D. Pampura & I. V. Sandimirov, 1991. Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from137Cs and210Pb in sediment cores. Nature 350: 601–604.

    Google Scholar 

  • Eggimen, D. W., F. T. Manheim & P. R. Betzer, 1980. Dissolution and analysis of amorphous silica in marine sediments. J. sed. Petrol. 50: 215–225.

    Google Scholar 

  • Flower, R. J., 1993. A taxonomic re-evaluation of endemicCyclotella taxa in Lake Baikal, Siberia. Nova Hedwigia Beih. 106: 203–220.

    Google Scholar 

  • Foged, N., 1993. Some diatoms from Siberia especially from Lake Baikal. Diatom Research 8: 231–279.

    Google Scholar 

  • Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.

    Google Scholar 

  • Galazii, G., 1991. Lake Baikal reprieved. Endeavour, New Series 15: 13–17.

  • Genkal, S. I. & G. I. Popovskaya, 1991. New data on the frustule morphology ofAulacoseira islandica (Bacillariophyta). Diatom Research 6: 255–266.

    Google Scholar 

  • Granina, L. Z., M. A. Grachev, E. B. Karabanov, V. M. Kuptsov, M. K. Shimaraeva & D. F. Williams, 1993. Accumulation of biogenic silica in bottom sediments of Baikal. Russian Geology and Geophysics 34: 126–135.

    Google Scholar 

  • Khotinskiy, N. A., 1984. Holocene climatic change. In Velichko, A. A. (ed.), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis: 305–309.

    Google Scholar 

  • Khursevich, G. K., 1989. Species Atlas.Stephanodiscus andCyclostephanos (Bacillariophyta) from Upper Cenozoic sediments, USSR. Science and Techniques, Minsk, 86 pp, 80 pl. (in Russian)

    Google Scholar 

  • Kociolek, J. P. & E. F. Stoermer, 1988. Taxonomy and systematic position of theGomphoneis quadripunctata species complex. Diatom Research 3: 95–108.

    Google Scholar 

  • Kozhov, M. M., 1963. Lake Baikal and its Life. Dr W. Junk Publishers, The Hague, 344 pp.

    Google Scholar 

  • Kozhova, O. M., N. A. Shastina & G. S. Kaplina, 1982. Size characteristics ofMelosira islandica ssp.helvetica O. Müll. from Lake Baikal. Hydrobiological J. 18: 6–10.

    Google Scholar 

  • Kuzmin, M. I., D. F. Williams, N. A. Logachev, S. Colman, B. N. Khakhaev, T. Kawai, P. Hearn, Sh. Horie, L. A. Pevzner, A. A. Bukharov & V. A. Fialkov, 1993. The Barkal Drilling Project: Scientific objectives and recent results. Russian Geology and Geophysics 34: 3–11.

    Google Scholar 

  • Lake Baikal Paleoclimate Project Members, 1992. Initial results of U.S.-Soviet paleoclimate study of Lake Baikal. EOS, Trans. am. geophys. Union 73: 457–462.

    Google Scholar 

  • Leinen, M., 1977. A normative calculation technique for determining opal in deep-sea sediments. Geoch. Cosmoch. Acta 41: 671–676.

    Google Scholar 

  • Likhoshway, Ye., T. Nikiteeva, G. Pomazkina & Ye. Meleshko, 1993. Fossil diatom algae of Lake Baikal. In Fifth Workshop on Diatom Algae: Diatom algae as indicators of the changes of climate and environment. Russian Academy of Sciences, Siberian Division, Irkutsk: 95–98.

    Google Scholar 

  • Lorefice, G. J. & M. Munawar, 1974. The abundance of diatoms in the southwestern nearshore region of Lake Ontario during the spring thermal bar period. Proc. 17th Conf. Great Lakes Res. 1974: 619–628.

  • Lund, J. W. G., 1966. The role of the turbulence in the seasonal cycle of some freshwater species ofMelosira. Bot. Zh. 51: 176–187. (in Russian)

    Google Scholar 

  • Lydolph, P. E., 1977. Climates of the Soviet Union. World Survey of Climatology; Vol. 7. Elsevier Scientific Pub. Co., Amsterdam, 443 pp.

    Google Scholar 

  • Maatela, P., J. Paasivirta, M. A. Grachev & E. B. Karabanov, 1990. Organic chlorine compounds in lake sediments. V. Bottom of Baikal near a pulp mill. Chemosphere 21: 1381–1384.

    Google Scholar 

  • Makarova, I. V. & G. V. Pomazkina, 1992.Stephanodiscus inconspicuus. Algologia 2: 84–86. (in Russian)

    Google Scholar 

  • Mortlock, R. A. & P. N. Froelich, 1989. A simple method for the rapid determination of biogenic:opal in pelagic marine sediments. Deep Sea Res. 36: 1415–1426.

    Google Scholar 

  • Peck, J. A., J. W. King, S. M. Colman & V. A. Kravchinsky, 1994. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change. Earth Plan. Sci. Lett. 122: 221–238.

    Google Scholar 

  • Pilskaln, C. H. & J. Paduan, 1992. Laboratory techniques for the handling and geochemical analysis of water column particulate and surface sediment samples. MBARI Tech. Rept. No. 92–9, 22 pp.

  • Popovskaya, G. I., 1991. Phytoplankton of Lake Baikal and its long-term changes (1958–1990). Dissertation Abstract: Academy of Sciences, Siberian Division, Central Siberian Botanical Garden, Novosibirsk, 32 pp. (in Russian)

  • Popovskaya, G., 1993. Planktonic diatom algae of Lake Baikal and their long-term monitoring. In Fifth Workshop on Diatom Algae: Diatom algae as indicators of the changes of climate and environment. Russian Academy of Sciences, Siberian Division, Irkutsk: 114–116.

    Google Scholar 

  • Riasanovsky, N. V., 1984. A History of Russia, 4th Ed. Oxford University Press, New York, 695 pp.

    Google Scholar 

  • Shimaraev, M. N., N. G. Granin & A. A. Zhdanov, 1993. Deep ventilation of Lake Baikal waters due to spring thermal bars. Limnol. Oceanogr. 38: 1068–1072.

    Google Scholar 

  • Skvortzow, B. W., 1937. Bottom diatoms from Olhon Gate of Baikal Lake, Siberia. Philipp. J. Sci. 62: 293–377.

    Google Scholar 

  • Skvortzow, B. W. & C. I. Meyer, 1928. A contribution to the diatoms of Baikal Lake. Proc. Sungaree River Biological Station. 1: 1–55.

    Google Scholar 

  • Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.

    Google Scholar 

  • Stoermer, E. F. & J. J. Yang, 1969. Plankton diatom assemblages in Lake Michigan. Univ. of Michigan, Ann Arbor, Michigan, Great Lakes Research Division Special Rep. No. 47, 168 pp.

  • Stoermer, E. F., R. G. Kreis & L. Sicko-Goad, 1981. A systematic, quantitative, and ecological comparison ofMelosira islandica O. Müll. withM. granulata (Ehr.) Ralfs from the Laurentian Great Lakes. J. Great Lakes Res. 7: 345–356.

    Google Scholar 

  • Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985a. Postsettlement diatom succession in the Bay of Quinte, Lake Ontario. Can. J. Fish. aquat. Sci. 42: 754–767.

    Google Scholar 

  • Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985b. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. J. Phycol. 21: 257–276.

    Google Scholar 

  • Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1985c. Siliceous microfossil succession in the recent history of Lake Superior. Proc. Acad. nat. Sci. Philad. 137: 106–118.

    Google Scholar 

  • Stoermer E. F., Q. Yu-zao & T. B. Ladewski, 1986. A quantitative investigation of shape variation inDidymosphenia (Lyngbye) M. Schmidt (Bacillariophyta). Phycologia 25: 494–502.

    Google Scholar 

  • Stoermer, E. F., C. L. Schelske & J. A. Wolin, 1990. Siliceous microfossil succession in the sediments of McLeod Bay, Great Slave Lake, Northwest Territories. Can. J. Fish. aquat. Sci. 47: 1865–1874.

    Google Scholar 

  • Stoermer, E. F., J. A. Wolin & C. L. Schelske, 1993. Paleolimnological comparison of the Laurentian Great Lakes based on diatoms. Limnol. Oceanogr. 38: 1311–1316.

    Google Scholar 

  • Stoermer, E.F., M. B. Edlund, C. H. Pilskaln & C. L. Schelske, 1995. Siliceous microfossil distribution in the surficial sediments of Lake Baikal. J. Paleolim. (in press).

  • Weiss, R. F., E. C. Carmack & V. M. Koropalov, 1991. Deep-water renewal and biological production in Lake Baikal. Nature 349: 665–669.

    Google Scholar 

  • Wilkinson, L., 1989. SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL, 638 pp.

    Google Scholar 

  • Williams, D. F., L. Qui, E. Karabanov & A. Gvozdkov, 1993. Geochemical indicators of productivity and sources of organic matter in surficial sediments of Lake Baikal. Russian Geology and Geophysics 34: 111–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edlund, M.B., Stoermer, E.F. & Pilskaln, C.H. Siliceous microfossil succession in the recent history of two basins in Lake Baikal, Siberia. J Paleolimnol 14, 165–184 (1995). https://doi.org/10.1007/BF00735480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735480

Key words

Navigation