Skip to main content
Log in

The relative proportion of H1° and A24 is reversed in oligodendrocytes during rat brain development

  • Short Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The histone complement of oligodendrocyte chromatin at different stages of brain development was studied after acid extraction of nuclei.

  2. 2.

    HCl-soluble proteins were analyzed by different electrophoretic techniques.

  3. 3.

    Our results show an increase in the concentration of histone H1° with differentiation.

  4. 4.

    The increase in H1° is accompanied by a concomitant decrease in the total amount of the ubiquitinated form of histone H2A (A24).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Brown, I. R. (1978). Postnatal appearance of short DNA repeat length in neurons of the cerebral cortex.Biochem. Biophys. Res. Commun. 84285–292.

    Google Scholar 

  • Cole, R. D. (1984). A minireview of microheterogeneity in H1 histone and its possible significance.Anal. Biochem. 13624–30.

    Google Scholar 

  • Di Liegro, I., Salemi, G., and Cestelli, A. (1985). A low repeat length in oligodendrocyte chromatin.J. Neurochem. 451006–1012.

    Google Scholar 

  • Gjerset, R., Gorka, C., Hasthorpe, S., Lawrence, J. J., and Eisen, H. (1982). Developmental and hormonal regulation of protein H1° in rodents.Proc. Natl. Acad. Sci. USA 792333–2337.

    Google Scholar 

  • Goldknopf, I. L., Taylor, C. W., Baum, R. M., Yeoman, L. C., Olson, M. O. J., Prestayko, A. W., and Busch, H. (1975). Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein.J. Biol. Chem. 2507182–7187.

    Google Scholar 

  • Isenberg, I. (1979). Histones.Annu. Rev. Biochem. 48159–191.

    Google Scholar 

  • Jaeger, A. W., and Kuenzle, C. C. (1982). The chromatin repeat length of brain cortex and cerebellar neurones changes concomitant with terminal differentiation.EMBO J. 1811–816.

    Google Scholar 

  • Katovich Hurley, C. (1977). Electrophoresis of histones: A modified Panyim and Chalkley system for slab gels.Anal. Biochem. 80624–626.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680–685.

    Google Scholar 

  • Levinger, L., and Varshavsky, A. (1982). Selective arrangement of ubiquitinated and D1 proteincontaining nucleosomes within theDrosophila genome.Cell 28375–385.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265–275.

    Google Scholar 

  • McGhee, J. D., Rau, D. C., Charney, E., and Felsenfeld, G. (1980). Orientation of the nucleosome within the higher order structure of chromatin.Cell 2287–96.

    Google Scholar 

  • Moorman, A. F. M., de Boer, P. A. J., Charles, R., and Lamers, W. H. (1987). The histone H1°/H5 variant and terminal differentiation of cells during development ofXenopus laevis.Differentiation 35100–107.

    Google Scholar 

  • Mori, S., and Leblond, C. P. (1970). Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats.J. Comp. Neurol. 1391–30.

    Google Scholar 

  • Norton, W. T. (1984).Oligodendroglia, Plenum Press, New York.

    Google Scholar 

  • Pehrson, J., and Cole, R. D. (1980). Histone H1° accumulates in growth inhibited cultured cells.Nature 28543–44.

    Google Scholar 

  • Pehrson, J., and Cole, R. D. (1982). Histone H1 subfractions and H1° turnover at different rates in non-dividing cells.Biochemistry 21456–460.

    Google Scholar 

  • Perkins, P. S., and Young, R. W. (1987). Comparison of histones in retina and brain nuclei from newborn and adult mice.Dev. Brain Res. 33161–168.

    Google Scholar 

  • Piña, B., Martinez, P., Simon, L., and Suau, P. (1984). Differential kinetics of histone H1° accumulation in neuronal and glial cells from rat cerebral cortex during postnatal development.Biochem. Biophys. Res. Commun. 123697–702.

    Google Scholar 

  • Risley, M. S., and Eckhardt, R. A. (1981). H1 histone variants inXenopus laevis.Dev. Biol. 8479–87.

    Google Scholar 

  • Roche, J., Gorka, C., Goeltz, P., and Lawrence, J. J. (1985). Association of histone H1° with a gene repressed during liver development.Nature 314197–198.

    Google Scholar 

  • Snyder, D. S., Raine, C. S., Farooq, M., and Norton, W. T. (1980). The bulk isolation of oligodendroglia from whole rat forebrain: A new procedure using physiologic media.J. Neurochem 341614–1631.

    Google Scholar 

  • Thoma, F. (1988). The role of histone H1 in nucleosomes and chromatin fibers. InArchitecture of Eukaryotic Genes (G. Kahl, Ed.), VCH, Weinheim, pp. 163–185.

    Google Scholar 

  • Thoma, F., Koller, T., and Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and the salt-dependent superstructures of chromatin.J. Cell Biol. 83403–427.

    Google Scholar 

  • Thomas, J. O., and Thompson, R. J. (1977). Variation in chromatin structure in two cell types from the same tissue: A short DNA repeat length in cerebral cortex neurons.Cell 10633–640.

    Google Scholar 

  • Thomas, J. O., Rees, C., and Pearson, E. C. (1985). Histone H5 promotes the association of condensed chromatin fragments to give pseudo-higher-order structures.Eur. J. Biochem. 147143–151.

    Google Scholar 

  • Weintraub, H. (1978). The neucleosomal repeat length increases during erythropoiesis in the chick.Nucleic Acids Res. 51179–1188.

    Google Scholar 

  • Whatley, S. A., Hall, C., and Lim, L. (1981). Chromatin organization in the rat hypothalamus during early development.Biochem. J. 196115–119.

    Google Scholar 

  • Wunsch, A. M., Haas, A. L., and Lough, J. (1987). Synthesis and ubiquitination of histones during myogenesis.Dev. Biol. 11985–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Liegro, I., Cestelli, A. The relative proportion of H1° and A24 is reversed in oligodendrocytes during rat brain development. Cell Mol Neurobiol 10, 267–274 (1990). https://doi.org/10.1007/BF00734579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734579

Key words

Navigation