Skip to main content
Log in

Isolation of three novel cholinergic neuron-specific gangliosides from bovine brain and theirin vitro syntheses

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In the present study, three extremely minor but novel Chol-1 antigens, termed X1, X2, and X3 have been isolated from bovine brain gangliosides. Based on the results of sialidase degradation, TLC-immunostaining with anti-Chol-1 antibody and fast atom bombardment mass spectrometry, their chemical structures were identified as:

$$\begin{gathered} III^6 NeuAc--GgOse4Cer (X1:GM1\alpha ) \hfill \\ III^6 NeuAc,II^3 NeuAc--GgOse4Cer (X2:GT1a\alpha ) \hfill \\ III^6 NeuAc,II^3 NeuAc--NeuGc--GgOse4Cer (X3:GT1b\alpha ) \hfill \\ \end{gathered} $$

The yields of GM1α, GD1aα, and GT1bα, were approximately 150, 20, and 10 µg, respectively, from 10 g of the bovine brain ganglioside mixture. In conjunction with our previous observations, all gangliosides with anti-Chol-1 reactivity were found to contain a common sialyl α2–6N-acetylgalactosamine residue, indicating that this unique sialyl linkage is the specific antigenic determinant. We subsequently examined the biosyntheses of the three novel Chol-1 gangliosides using rat liver Golgi fraction as an enzyme source. The results showed that GM1α, GD1aα, and GT1bα were synthesized from asialo-GM1, GM1a, and GD1b, respectively, by the action of a GalNAc α2-6sialyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones RT, Walker JH, Richardson PJ, Fox GQ, Whittaker VP (1981)Cell Tissue Res 218: 355–73.

    Google Scholar 

  2. Walker JH, Jones TJ, Obrocki J, Richardson GP, Stadlar H (1982)Cell Tissue Res 223: 101–16.

    Google Scholar 

  3. Richardson PJ, Walker KH, Jones RT, Whittaker VP (1982)J Neurochem 38: 1605–14.

    Google Scholar 

  4. Ferretti P, Borroni E (1986)J Neurochem 46: 1888–94.

    Google Scholar 

  5. Obrokki J, Borroni E (1988)Exp Brain Res 72: 71–82.

    Google Scholar 

  6. Giuliani A, Calappi E, Borroni E, Whittaker VP, Sonnino S, Tettamanti G (1990)Arch Biochem Biophys 280: 211–16.

    Google Scholar 

  7. Hirabayashi Y, Nakao T, Matsumoto M, Obata K, Ando S (1988)J Chromatogr 445: 377–84.

    Google Scholar 

  8. Hirabayashi Y, Hyogo A, Nakao T, Tsuchiya K, Suzuki Y, Matsumoto M, Kon K, Ando S (1990)J Biol Chem 265: 8144–51.

    Google Scholar 

  9. Hidari KI-PJ, Irie F, Suzuki M, Kon K, Ando S, Hirabayashi Y (1993)Biochem J 296: 259–63.

    Google Scholar 

  10. Nakao T, Kon K, Ando S, Miyatake T, Yuki N, Li Y-T, Furuya S, Hirabayashi Y (1993)J Biol Chem 268: 21028–34.

    Google Scholar 

  11. Ando S, Hirabayashi Y, Kon K, Inagaki F, Tate S, Whittaker VP (1992)J Biochem (Tokyo) 111: 287–90.

    Google Scholar 

  12. Hirabayashi Y, Nakao T, Irie F, Whittaker VP, Kon K, Ando, S (1992)J Biol Chem 267: 12973–78.

    Google Scholar 

  13. Li Y-T, Nakagawa H, Ross SA, Hansson GC, Li S-C (1990)J Biol Chem 265: 21629–33.

    Google Scholar 

  14. Chou M-Y, Li S-C, Kiso M, Hasegawa A, Li Y-T (1994)J Biol Chem 269: 18821–26.

    Google Scholar 

  15. Hirabayashi Y, Suzuki T, Suzuki Y, Taki T, Matsumoto M, Higashi H, Kato S (1983)J Biochem (Tokyo) 94: 327–30.

    Google Scholar 

  16. Higashi H, Fukui Y, Ueda S, Kato S, Hirabayashi Y, Matsumoto M, Naiki, M (1984)J Biochem (Tokyo) 95: 1517–20.

    Google Scholar 

  17. Higashi H, Ikuta K, Ueda S, Kato S, Hirabayashi Y, Matsumoto M, Naiki M (1984)J Biochem (Tokyo) 95: 785–94.

    Google Scholar 

  18. Ohashi Y, Kurono S (1994) InBiological Mass Spectrometry: Present and Future (Matsuo T, Caprioli RM, Gross ML, Seyama Y, eds) pp. 647–653, Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  19. Sandberg P-O, Marzella L, Glumann H (1980)Exp Cell Res 130: 393–400.

    Google Scholar 

  20. Hidari KI-PJ, Sanai Y, Kawashima I, Tai T, Inagaki F, Nagai Y (1994)Eur J Biochem 221: 603–9.

    Google Scholar 

  21. Irie F, Hidari KI-PJ, Tai T, Li Y-T, Seyama Y, Hirabayashi Y (1994)FEBS Lett 351: 291–94.

    Google Scholar 

  22. Nakao T, Kon K, Ando S, Hirabayashi Y (1991)Biochim Biophys Acta 1086: 305–9.

    Google Scholar 

  23. Schachter H, Roseman S (1980) InThe Biochemistry of Glycoproteins and Proteoglycans (Lennarz WJ, ed.) pp. 85–160, New York: Plenum Press.

    Google Scholar 

  24. Pohlentz G, Klein D, Schmitz D, Schwarzmann G, Peter-Katalinic J, Sandhoff K (1988)Biol Chem Hoppe-Seyler 369: 55–63.

    Google Scholar 

  25. Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988)Proc Natl Acad Sci 85: 7044–48.

    Google Scholar 

  26. Iber H, Kaufmann R, Pohlentz G, Schwarzmann G, Sandhoff K (1989)FEBS Lett 248: 18–22.

    Google Scholar 

  27. Iber H, Sandhoff K (1989)FEBS Lett 254: 124–28.

    Google Scholar 

  28. Kusunoki S, Chiba A, Hirabayashi Y, Irie F, Kotani M, Kawashima I, Tai T, Nagai Y (1993)Brain Res 623: 83–88.

    Google Scholar 

  29. Irie F, Hashikawa T, Seyama Y, Hirabayashi Y (1993)Glycoconjugate J 10: 292–93.

    Google Scholar 

  30. Irie F, Hashikawa T, Tai T, Seyama Y, Hirabayashi Y (1994)Brain Res 665: 161–66.

    Google Scholar 

  31. Fukunaga K, Miyamoto E, Soderling TR (1990)J Neurochem 54: 102–9.

    Google Scholar 

  32. Higashi H, Yamagata T (1992)J Biol Chem 267: 9839–43.

    Google Scholar 

  33. Higashi H, Omori A, Yamagata T (1992)J Biol Chem 267: 9831–38.

    Google Scholar 

  34. Bremer EG, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984)J Biol Chem 259: 6818–25.

    Google Scholar 

  35. Bremer EG, Schlessinger J, Hakomori S (1986)J Biol Chem 261: 2434–40.

    Google Scholar 

  36. Hara-Yokoyama M, Hirabayashi Y, Irie F, Syuto B, Moriishi K, Sugiya H, Furuyama S (1995)J Biol Chem 270: 8115–21.

    Google Scholar 

  37. Svennerholm L (1964)Lipids 5: 145–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: The nomenclature used for gangliosides is based on the system of Svennerholm [37] and Hirabayashiet al. [8, 12]. Cer, ceramide; Gal, galactose; Glc, glucose; GalNAc,N-acetylgalactosamine; NeuAc,N-acetylneuraminic acid; NeuGc,N-glycolylneuraminic acid; Hex, hexose; HexNAc,N-acetylhexosamine; TLC, thin layer chromatography; HPTLC, high performance thin layer chromatography; ELISA, enzyme-linked immunosorbent assay; FAB-MS, fast atom bombardment-mass spectrometry; HD, Hanganutziu-Deicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irie, F., Kurono, S., Li, YT. et al. Isolation of three novel cholinergic neuron-specific gangliosides from bovine brain and theirin vitro syntheses. Glycoconjugate J 13, 177–186 (1996). https://doi.org/10.1007/BF00731492

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731492

Keywords

Navigation