Skip to main content
Log in

Immunohistochemical localization of articular cartilage proteoglycan and link protein in situ using monoclonal antibodies and lectin-binding methods

  • Originals
  • Published:
Histochemistry Aims and scope Submit manuscript

Abstract

Lectins have specificity for certain carbohydrate structures in macromolecules. Lectins are, therefore, useful histochemical tools for demonstrating the composition and localization of components of connective tissue matrices, such as articular cartilage. In order to assess the significance of observed lectin-binding patterns, experiments were performed in which monoclonal antibodies against chondroitin sulphate- and keratan sulphate-containing proteolgycans and link proteins were applied to sections of bovine articular cartilage after enzymatic digestion with chondroitinase ABC and keratanase. The following conclusions were made: (1) Binding of peanut agglutinin (PNA) in the interterritorial matrix predominantly indicates the presence of keratan sulphate, but may also detectO-linked oligosaccharides of proteoglycans. (2) In normal cartilage wheat germ agglutinin (WGA) binds nearly exclusively to keratan sulphate. In cartilage degraded with chondroitinase ABC and keratanase this lectin may also detect carbohydrates in link protein due to enhanced accessibility. Binding of WGA toO-linked oligosaccharides may eventually occur. (3) In enzymatically digested cartilage matrix, staining with soybean agglutinin (SBA) may be due to link protein, but not to chondroitin sulphate, because specific breakdown of the glycosaminoglycan chain is required for binding of SBA. (4)Ulex europaeus agglutinin I (UEA I) binding sites are only detectable in digested cartilage matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen AK, Neuberger A, Sharon N (1973) The purification, composition and specificity of wheat-germ agglutinin. Biochem J 131:155–162

    Google Scholar 

  • Baker JR, Caterson B (1979) The isolation and characterization of the link proteins from proteoglycan aggregates of bovine nasal cartilage. J Biol Chem 254:2387–2393

    Google Scholar 

  • Bayliss MT, Venn MF (1980) Chemistry of human articular cartilage. In: Maroudas A, Holborow EJ (eds) Studies in joint disease. Pitman Medical, Tunbridge Wells, pp 2–58

    Google Scholar 

  • Bollet AJ, Nance JL (1966) Biochemical findings in normal and osteoarthritic articular cartilage. II. Chondroitin sulfate concentration and chain length, water, and ash content. J Clin Invest 45:1170–1177

    Google Scholar 

  • Bruckner P, Vaughan L, Winterhalter KH (1985) Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans. Proc Natl Acad Sci USA 82:2608–2612

    Google Scholar 

  • Burton-Wurster N, Horn VJ, Lust G (1988) Immunohistochemical localization of fibronectin and chondronectin in canine articular cartilage. J Histochem Cytochem 36:581–588

    Google Scholar 

  • Byers PD, Maroudas A, Oztop F, Stockwell RA, Venn MF (1977) Histological and biochemical studies on cartilage from osteoarthritic femoral heads with special reference to surface characteristics. Connect Tissue Res 5:41–49

    Google Scholar 

  • Caterson B, Christner JE, Baker JR (1983) Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem 258:8848–8854

    Google Scholar 

  • Caterson B, Baker JR, Christner JE, Lee Y, Lentz M (1985a) Monoclonal antibodies as probes for determining the microheterogeneity of the link proteins of cartilage proteoglycans. J Biol Chem 260:11348–11356

    Google Scholar 

  • Caterson B, Christner JE, Baker JR, Couchman JR (1985b) Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc 44:386–393

    Google Scholar 

  • Choi HU, Tang L-H, Johnson TL, Rosenberg L (1985) Proteoglycans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography. J Biol Chem 260:13370–13376

    Google Scholar 

  • Couchman JR, Caterson B, Christner JE, Baker JR (1984) Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissue. Nature 307:650–652

    Google Scholar 

  • Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycoproteins. Eur J Biochem 117:41–55

    Google Scholar 

  • Eyre DR, McDevitt CA, Billingham MEJ, Muir H (1980) Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis. Biochem J 188:823–837

    Google Scholar 

  • Eyre DR, Apone S, Wu JJ, Ericsson LH, Walsh KA (1987) Collagen type IX: evidence for covalent linkages to type II collagen in cartilage. FEBS Lett 220:337–341

    Google Scholar 

  • Eyre DR, Wu JJ, Woods PE (1991) The cartilage collagens: structural and metabolic studies. J Rheumatol 18 [Suppl 27]:49–51

    Google Scholar 

  • Farnum CE (1985) Binding of lectin-fluorescein conjugates to intracellular compartments of growth-plate chondrocytes in situ. Am J Anat 174:419–435

    Google Scholar 

  • Glant TT, Mikecz K, Poole AR (1986) Monoclonal antibodies to different protein-related epitopes of human articular cartilage proteoglycans. Biochem J 234:31–41

    Google Scholar 

  • Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–339

    Google Scholar 

  • Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and many functions. FASEB J 6:861–870

    Google Scholar 

  • Hardingham TE, Fosang AJ, Dudhia J (1992) Aggrecan, the chondroitin sulfate/keratan sulfate proteoglycan from cartilage. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 5–19

    Google Scholar 

  • Hascall VC, Heinegård D (1974) Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem 249:4232–4241

    Google Scholar 

  • Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Pimentel ER, Sommarin Y, Wendel M, Oldberg A, Heinegård D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267:6132–6136

    Google Scholar 

  • Heinegård D (1977) Polydispersity of cartilage proteoglycans. Structural variations with size and buoyant density of the molecules. J Biol Chem 252:1980–1989

    Google Scholar 

  • Heinegård D, Oldberg A (1989) Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J 3:2042–2051

    Google Scholar 

  • Heinegård DK, Pimentel ER (1992) Cartilage matrix proteins. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 95–110

    Google Scholar 

  • Hewitt AT, Varner HH, Silver MH, Dessau W, Wilkes C, Martin GR (1982) The isolation and partial characterization of chondronectin, an attachment factor for chondrocytes. J Biol Chem 257:2330–2334

    Google Scholar 

  • Hoedt-Schmidt S (1989) Lectin-binding histochemistry of normal and osteoarthritic cartilage tissue. Clin Exp Rheumatol 7:257–264

    Google Scholar 

  • Hoedt-Schmidt S (1990) Effects of antirheumatic drugs on enzymatically induced articular cartilage degradation using lectinbinding techniques. Calcif Tissue Int 46 [Suppl]:A54

  • Holthofer H (1983) Lectin binding sites in kidney: a comparative study in 14 animal species. J Histochem Cytochem 31:531–537

    Google Scholar 

  • Jahnke MR, Donohue PJ, Caterson B (1985) Human intervertebral disc proteoglycans and link proteins resemble those from older articular cartilage. Orthop Res Soc Trans 10:317

    Google Scholar 

  • Kirsch T, Pfäffle M (1992) Selective binding of anchorin CII (annexin V) to type II and X collagen and to chondrocalcin (C-propeptide of type II collagen). Implications for anchoring function between matrix vesicles and matrix proteins. FEBS Lett 310:143–147

    Google Scholar 

  • Larsson T, Sommarin Y, Paulsson M, Antonsson P, Hedbom E, Wendel M, Heinegård D (1991) Cartilage matrix proteins. J Biol Chem 266:20428–20433

    Google Scholar 

  • Lawler JW, Slayter HS, Coligan JE (1978) Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J Biol Chem 253:8609–8616

    Google Scholar 

  • Liu HM, Anderson K, Caterson B (1987) Demonstration of a keratan sulfate proteoglycan and a mannose-rich glycoconjugate in corpora amylacea of the brain by immunocytochemical and lectin-binding methods. J Neuroimmunol 14:49–60

    Google Scholar 

  • Mankin HJ, Lippiello L (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone Joint Surg 52:424–434

    Google Scholar 

  • Mankin HJ, Lippiello L (1971) The glycosaminoglycans of normal and arthritic cartilage. J Clin Invest 50:1712–1719

    Google Scholar 

  • Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg 53:523–537

    Google Scholar 

  • Mankin HJ, Johnson ME, Lippiello L (1981) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. III. Distribution and metabolism of amino sugarcontaining macromolecules. J Bone Joint Surg 63:131–139

    Google Scholar 

  • Mann DM, Yamaguchi Y, Bourdon MA, Ruoslahti E (1990) Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis. J Biol Chem 265:5317–5323

    Google Scholar 

  • McCormick D, Rest M van der, Goodship J, Lozano G, Ninomiya Y, Olsen BR (1987) Structure of the glycosaminoglycan domain in the type IX collagen-proteoglycan. Proc Natl Acad Sci USA 84:4044–4048

    Google Scholar 

  • Mehmet H, Scudder P, Tang PW, Hounsell EF, Caterson B, Feizi T (1986) The antigenic determinants recognized by three monoclonal antibodies to keratan sulfate involve sulfated hepta- or larger oligosaccharides of the poly(N-acetyllactosamine) series. Eur J Biochem 157:385–391

    Google Scholar 

  • Miller RR, McDevitt CA (1988) Thrombospondin is present in articular cartilage and is synthesized by articular chondrocytes. Biochem Biophys Res Commun 153:708–714

    Google Scholar 

  • Mollenhauer J, Bee JA, Lizarbe MA, Mark K von der (1984) Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol 98:1572–1578

    Google Scholar 

  • Mort JS, Caterson B, Poole AR, Roughley PJ (1985) The origin of human cartilage proteoglycan link-protein heterogeneity and fragmentation during aging. Biochem J 232:805–812

    Google Scholar 

  • Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    Google Scholar 

  • Neame PJ, Perin J-P, Bonnet F, Christner JE, Jolles P, Baker JR (1985) An amino acid sequence common to both cartilage proteoglycan and link protein. J Biol Chem 260:12402–12404

    Google Scholar 

  • Neame PJ, Choi HU, Rosenberg LC (1989) The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage. J Biol Chem 264:8653–8661

    Google Scholar 

  • Ochoa JH (1981) Consideration of the nature of the lectin-carbohydrate interaction. J Chromatogr 215:351–360

    Google Scholar 

  • Oike Y, Kimata K, Shinomura T, Nakazawa K, Suzuki S (1980) Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-β-d-galactosidase (keratanase). Biochem J 191:193–207

    Google Scholar 

  • Oldberg A, Antonsson P, Lindblom K, Heinegård D (1989) A collagen-binding 59-kD protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2 (decorin). EMBO J 8:2601–2604

    Google Scholar 

  • Oldberg A, Antonsson P, Lindblom K, Heinegård D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem 267:22346–22350

    Google Scholar 

  • Osborn M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulincontaining structures. In: Wilson L (ed) Methods in cell biology, vol 24. Academic Press, New York, pp 97–132

    Google Scholar 

  • Pearce RH, Grimmer BJ (1976) The chemical constitution of the proteoglycan of human intervertebral disc. Biochem J 157:753–763

    Google Scholar 

  • Peyron JG, Stanescu R, Stanescu V, Maroteaux P (1978) Distribution électrophorétique particulière des populations de protéoglycanes dans les zones de régénération du cartilage arthrosique et étude de leur collagène. Rev Rhum Mal Osteoartic 45:569–575

    Google Scholar 

  • Pfäffle M, Ruggiero F, Hofmann H, Fernández MP, Selmin O, Yamada Y, Garrone R, von der Mark K (1988) Biosynthesis, secretion and extracellular localization of anchorin CII, a collagen-binding protein of the calpactin family. EMBO J 7:2335–2342

    Google Scholar 

  • Plaas AHK, Neame PJ, Nivens CM, Reiss L (1990) Identification of the keratan sulfate attachment sites on bovine fibromodulin. J Biol Chem 265:20634–20640

    Google Scholar 

  • Plaas AHK, Barry FP, Wong-Palms S (1992) Keratan sulfate substitution on cartilage matrix molecules. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 69–78

    Google Scholar 

  • Poole AR, Pidoux I, Reiner A, Tang L-H, Choi H, Rosenberg L (1980) Localization of proteoglycan monomer and link protein in the matrix of bovine articular cartilage: an immunohistochemical study. J Histochem Cytochem 28:621–635

    Google Scholar 

  • Rest M van der, Mayne R (1988) Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263:1615–1618

    Google Scholar 

  • Rosenberg LC (1992) Structure and function of dermatan sulfate proteoglycans in articular cartilage. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 45–62

    Google Scholar 

  • Roth J (1978) The lectins. Molecular probes in cell biology and membrane research. Fischer, Jena

    Google Scholar 

  • Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57:375–413

    Google Scholar 

  • Schulte BA, Spicer SS (1983a) Histochemical evaluation of mouse and rat kidneys with lectin-horseradish peroxidase conjugates. Am J Anat 168:345–362

    Google Scholar 

  • Schulte BA, Spicer SS (1983b) Light microscopic histochemical detection of sugar residues in secretory glycoproteins of rodent and human tracheal glands with lectin-horseradish peroxidase conjugates and the galactose oxidase-Schiff sequence. J Histochem Cytochem 31:391–403

    Google Scholar 

  • Schünke M, Schumacher U, Tillmann B (1985) Lectin-binding in normal and fibrillated articular cartilage of human patellae. Virchows Arch [A] 407:221–231

    Google Scholar 

  • Stockwell RA (1979) Biology of cartilage cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Sweet MBE, Thonar EJ-M, Immelman AR, Solomon L (1977) Biochemical changes in progressive osteoarthrosis. Ann Rheum Dis 36:387–398

    Google Scholar 

  • Toda N, Doi A, Jimbo A, Matsumoto I, Seno N (1981) Interaction of sulfated glycosaminoglycans with lectins. J Biol Chem 256:5345–5349

    Google Scholar 

  • Varner HH, Horn VJ, Martin GR, Hewitt AT (1986) Chondronectin interactions with proteoglycan. Arch Biochem Biophys 244:824–830

    Google Scholar 

  • Venn MF, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129

    Google Scholar 

  • Vertel BM, Barkman LL (1984) Immunofluorescence studies of chondroitin sulfate proteoglycan biosynthesis: the use of monoclonal antibodies. Collagen Relat Res 4:1–20

    Google Scholar 

  • Watt SL, Lunstrum GP, McDonough AM, Keene DR, Burgeson RE, Morris NP (1992) Characterization of collagen types XII and XIV from fetal bovine cartilage. J Biol Chem 267:20093–20099

    Google Scholar 

  • Wu J-J, Woods PE, Eyre DR (1992) Identification of cross-linking sites in bovine cartilage types IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem 267:23007–23014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoedt-Schmidt, S., McClure, J., Jasani, M.K. et al. Immunohistochemical localization of articular cartilage proteoglycan and link protein in situ using monoclonal antibodies and lectin-binding methods. Histochemistry 99, 391–403 (1993). https://doi.org/10.1007/BF00717052

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00717052

Keywords

Navigation