Skip to main content
Log in

A combined molecular dynamics and Raman spectroscopy approach for designing ice-metal interfaces

  • Research Papers
  • Published:
Journal of Computer-Aided Materials Design

Summary

Understanding the structure and interatomic interactions of an ice-metal interface plays a fundamental role in the design of deicing coatings. This is demonstrated by a novel approach, combining vibrational results from laser Raman spectroscopy with molecular dynamics simulations to obtain insights into icing on solids which, in turn, lead to design criteria for minimizing adhesion. An atomistic model of ice-copper interaction is constructed based on electronic structure calculations and used to show that reasonable molecular geometry and binding energy at the interface can be obtained. Through molecular dynamics simulations we find that the ice layer adjacent to the copper surface is structurally more disordered than the layers further away, a result which is verified by the Raman spectra of vibrational frequencies. The primary adhesive bond is made by the adsorption of oxygen atoms at the lattice sites of the metal substrate. The information obtained by Raman spectroscopy and molecular dynamics is then exploited to arrive at specific recommendations for designing polymeric deicing coatings and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jellinek, H.H.G., J. Colloid Sci., 14 (1959) 268.

    Google Scholar 

  2. Jellinek, H.H.G., U.S. Army Cold Regions Research Engineering Laboratory, Hanover, NH, Special Report 83-17, 1983, p. 97.

  3. Pohlman, J.C. and Landers, P., IEEE Trans., PAS-101 (1982) 1497.

    Google Scholar 

  4. Hobbs, PV, Physics and Chemistry of Ice, MIT Press, Cambridge, MA, 1954.

    Google Scholar 

  5. Fletcher, N.H., The Chemical Physics of Ice, Cambridge University Press, London, 1970.

    Google Scholar 

  6. Sivakumar, T.C., Schuh, D., Sceats, M.G. and Rice, S.A., Chem. Phys. Lett., 48 (1977) 212.

    Google Scholar 

  7. Scherer, J.R., Go, M.K. and Kint, S., J. Chem. Phys., 78 (1974) 1304.

    Google Scholar 

  8. Englert, T., Abstreiter, G. and Pontcharra, J., Solid State Electr., 237 (1980) 31.

    Google Scholar 

  9. Erbil, A., Dresselhaus, G. and Dresselhaus, M.S., Solid State Commun., 25 (1982) 5451.

    Google Scholar 

  10. Underhill, C., Leung, S.Y., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev., B29 (1979) 769.

    Google Scholar 

  11. Nishioka, T., Shinoda, Y. and Ohamachi, Y., J. Appl. Phys., 57 (1985) 276.

    Google Scholar 

  12. Atwater, H., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1987.

  13. Tallant, D.R. and Higgens, K.L., In Proceedings of the Laser Institute of America 1983 Conference on Material Characterization, Vol. 42, 1983, p. 12.

  14. Clark, D.R. and Adar, F., In Resigton, D.R., Contrate, R.A. and Snyder, R.L. (Eds.) Advances in Material Characterization, Plenum Press, New York, NY, 1983, p. 199.

    Google Scholar 

  15. Rabolt, J.F. and Swalen, J.D., Research Report #5414, IBM, San Jose, CA, 1986.

  16. Ishitani, A., Ishida, H., Katagiri, G. and Tomita, S., Proceedings of the First International Conference on Composite Interfaces, Cleveland, OH, Academic Press, New York, NY, 1986, p. 218.

    Google Scholar 

  17. Metropolis, N. and Ulam, S., J. Am. Stat. Ass., 44 (1943) 335.

    Google Scholar 

  18. Alder, B.J. and Wainwright, T.E., J. Chem. Phys., 31 (1959) 459.

    Google Scholar 

  19. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

    Google Scholar 

  20. Rahman, A. and Stillinger, R.H., J. Chem. Phys., 55 (1971) 3336.

    Google Scholar 

  21. Briant, C.L. and Burton, J.J., J. Chem. Phys., 63 (1975) 3327.

    Google Scholar 

  22. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.E. and Hermans, J., In Pullman, B. (Ed.) Intermolecular Forces, Reidel, Dordrecht, 1981.

    Google Scholar 

  23. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., J. Phys. Chem., 91 (1987) 6269.

    Google Scholar 

  24. Toukan, K. and Rahman, A., Phys. Rev., B31 (1985) 2643.

    Google Scholar 

  25. Anderson, J., Ullo, J.J. and Yip, S., J. Chem. Phys., 87 (1987) 1726.

    Google Scholar 

  26. Anderson, J.J., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1986.

  27. Daw, M. and Baskes, M.I., Phys. Rev., B29 (1984) 6443.

    Google Scholar 

  28. Spohr, E. and Heinzinger, K., Chem. Phys. Lett., 123 (1986) 218.

    Google Scholar 

  29. Parsonage, N.G. and Nicholson, D., J. Chem. Soc., Faraday Trans., 82 (1986) 1521.

    Google Scholar 

  30. Parsonage, N.G. and Nicholson, D., J. Chem. Soc., Faraday Trans., 83 (1987) 663.

    Google Scholar 

  31. Gardner, A.A. and Valleau, J.P., J. Chem. Phys., 86 (1987) 4162.

    Google Scholar 

  32. Bauschlicher, C.W., J. Chem. Phys., 83 (1985) 3129.

    Google Scholar 

  33. Spohr, E. and Heinzinger, K., Electrochim. Acta, 33 (1988) 1211.

    Google Scholar 

  34. Heinzinger, K., Pure Appl. Chem., 63 (1991) 1733.

    Google Scholar 

  35. Jorgensen, W.L., J. Am. Chem. Soc., 103 (1981) 335.

    Google Scholar 

  36. Matsuoka, O., Clementi, E. and Yoshimine, M., J. Chem. Phys., 64 (1976) 1351.

    Google Scholar 

  37. Valleau, J.P. and Gardner, A.A., J. Chem. Phys., 86 (1987) 4162.

    Google Scholar 

  38. Personage, N.G. and Nicholson, D., J. Chem. Soc., Faraday Trans., 83 (1987) 663.

    Google Scholar 

  39. Holloway, S. and Bennemann, K.H., Surf. Sci., 101 (1980) 327.

    Google Scholar 

  40. Bullett, D., Solid State Physics, Academic Press, New York, NY, 1980.

    Google Scholar 

  41. Madey, T.E. and Yates, J.T., Surf. Sci., 51 (1977) 77.

    Google Scholar 

  42. Spohr, E., J. Phys. Chem., 93 (1989) 1617.

    Google Scholar 

  43. Spohr, E., Chem. Phys., 141 (1990) 87.

    Google Scholar 

  44. Sonwalkar, N., Shyam Sunder, S. and Sharma, S.K., J. Raman Spectrosc., 22 (1991) 551.

    Google Scholar 

  45. Sonwalkar, N., Shyam Sunder, S. and Sharma, S.K., Appl. Spectrosc., 47 (1993) 1585.

    Google Scholar 

  46. Sonwalkar, N., Shyam Sunder, S. and Sharma, S.K., Appl. Spectrosc., 46 (1992) 1869.

    Google Scholar 

  47. Wong, P.T.T. and Whalley, E., J. Chem. Phys., 62 (1975) 2418.

    Google Scholar 

  48. Venkatesh, C.G. and Rice, S.A., J. Chem. Phys., 63 (1975) 1065.

    Google Scholar 

  49. Sivakumar, T.C., Rice, S.A. and Seats, M.G., J. Chem. Phys., 69 (1978) 3468.

    Google Scholar 

  50. Klug, D.D., Mishima, O. and Whalley, E., J. Chem. Phys., 86 (1987) 5323.

    Google Scholar 

  51. Olander, D.S. and Rice, S.A., Proc. Natl. Acad. Sci. USA, 69 (1972) 98.

    Google Scholar 

  52. Klier, K. and Zettlemoyer, A.C., J. Coll. Interface Sci., 58 (1977) 193.

    Google Scholar 

  53. Klug, D.D. and Whalley, E., J. Chem. Phys., 81 (1984) 1220.

    Google Scholar 

  54. Prevost, M., Belle, D.V., Lippens, G. and Wodak, S., Mol. Phys., 71 (1990) 587.

    Google Scholar 

  55. Jorgensen, W.L., Chandrasekher, J., Madura, J., Impey, R.W. and Klein, M.L., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  56. Impey, R.W., Klein, M.L. and McDonald, I.R., J. Chem. Phys., 74 (1981) 647.

    Google Scholar 

  57. Tse, J.S., Klein, M.L. and McDonald, I.R., J. Chem. Phys., 81 (1984) 612.

    Google Scholar 

  58. Daw, M.S., Foiles, S.M. and Baskes, M.I., Mater. Sci. Rep., 9 (1993) 251.

    Google Scholar 

  59. Foiles, S.M., Baskes, M.I. and Daw, M.S., Phys. Rev., B33 (1986) 7983.

    Google Scholar 

  60. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  61. Ribarsky, M.W., Luedtke, W.D. and Landman, U., Phys. Rev., B32 (1985) 1430.

    Google Scholar 

  62. Andersson, S., Nyberg, C. and Tengstal, C.G., Chem. Phys. Lett., 104 (1984) 306.

    Google Scholar 

  63. Jacucci, G. and Rahman, A., Nuovo Cimemo, D4 (1984) 341.

    Google Scholar 

  64. Harris, F.J., Proc. IEEE, 66 (1978) 51.

    Google Scholar 

  65. Guiasu, S. and Sheniezer, A., Math. Intell., 7 (1985) 42.

    Google Scholar 

  66. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes, Cambridge University Press, Cambridge, MA, 1989, p. 430.

    Google Scholar 

  67. Sonwalkar, N., Yip, S. and Shyam Sunder, S., J. Chem. Phys., 101 (1994) 3216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonwalkar, N., Yip, S. & Sunder, S.S. A combined molecular dynamics and Raman spectroscopy approach for designing ice-metal interfaces. J Computer-Aided Mater Des 2, 77–100 (1995). https://doi.org/10.1007/BF00701615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00701615

Keywords

Navigation