Skip to main content
Log in

Lysine transport across the mucosal border of the perfused midgut in the freshwater shrimp,Macrobrachium rosenbergii

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1)

    Unidirectional transmembrane transport of3H-lysine across the mucosal border of the midgut from the freshwater shrimp,Macrobrachium rosenbergii, has been examined using an in vitro perfusion procedure.

  2. 2)

    Influx of this amino acid appeared to take place through a high-affinity, carrier-mediated transport system displaying Michaelis-Menten kinetics (Kt=18.0±2.1 μM;J maxmc =0.50±0.06 nm/g min) and an apparent low-affinity mechanism that had a transfer rate which was a linear function of luminal lysine concentration. The latter system cannot be conclusively distinguished from simple diffusion at this time.

  3. 3)

    The high-affinity process was sodium-dependent (lithium adequately substituting for sodium) and inhibited by arginine and iodoacetic acid.

  4. 4)

    The apparent low-affinity transport mechanism displayed homoexchange diffusion and was sodium-independent, inhibited by arginine and unaffected by iodoacetic acid.

  5. 5)

    Entry of lysine by either process was unresponsive to NaCN, ouabain and alteration of luminal pH.

  6. 6)

    These results suggest that cationic amino acid influx in crustacean intestine appears similar to processes reported for these solutes from a large variety of cell types. The major difference found for the shrimp gut is the apparent adaptation of the high-affinity carrier process for very low lysine concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahearn, G.A.: Glycine transport by the isolated midgut of the junbo shrimp,Penaeus marginatus. Amer. Zool.13, 1311–1312 (1973)

    Google Scholar 

  • Ahearn, G.A.: Kinetic characteristics of glycine transport by the isolated midgut of the marine shrimp,Penaeus marginatus. J. exp. Biol.61, 677–696 (1974)

    Google Scholar 

  • Ahearn, G.A.: Co-transport of glycine and sodium across the mucosal border of the midgut epithelium in the marine shrimp,Penaeus marginatus. J. Physiol.258, 499–520 (1976)

    Google Scholar 

  • Ahearn, G.A., Maginniss, L.A., Song, Y.K., Tornquist, A.: Intestinal water and ion transport in freshwater malacostracan prawns (Crustacea). In: Water relations in membrane transport in animals and plants (eds. A.M. Jungreis, T. Hodges, A.M. Kleinzeller, S.G. Schultz), pp. 129–142. New York: Academic Press 1977

    Google Scholar 

  • Akedo, H., Christensen, H.N.: Transfer of amino acids across the intestine: a new model amino acid. J. biol. Chem.237, 113–117 (1962)

    Google Scholar 

  • Ausiello, D.A., Segal, S., Thier, S.O.: Cellular accumulation of L-lysine in rat kidney cortex in vivo. Amer. J. Physiol.222, 1473–1478 (1972)

    Google Scholar 

  • Balazs, G.H., Ross, E., Brooks, C.C.: Preliminary studies on the preparation and feeding of crustacean diets. Aquaculture2, 369–377 (1972)

    Google Scholar 

  • Battistin, L., Piccoli, P., Lajtha, A.: Heteroexchange of amino acids in incubated slices of brain. Arch. Biochem. Biophys.151, 102–111 (1972)

    Google Scholar 

  • Brick, R.W.: Transport of lysine across the intestine of the freshwater prawn,Macrobrachium rosenbergii. Ph.D. dissertation, University of Hawaii 1975

  • Brick, R.W.: Epithelial transport of lysine in the prawnMacrobrachium rosenbergii. Amer. Zool.16, 225 (1967)

    Google Scholar 

  • Christensen, H.N.: Some observations from amino acid transport. In: Role of membranes in secretory processes (eds. L. Bolis, R.R. Keynes, W. Wilbrandt), pp. 433–447. New York: American Elsevier Publ. 1971

    Google Scholar 

  • Christensen, H.N.: Biological transport. Reading, Massachusetts: Benjamin, Inc. 1975

    Google Scholar 

  • Christensen, H.N., Liang, M.: On the nature of the “non-saturable” migration of amino acids into Ehrlich cells and into rat jejunum. Biochem. Biophys. Acta.112, 524–531 (1966)

    Google Scholar 

  • Crawford, R.L., Hampton, J.R.: Further characterization of lysine uptake byTrypanosoma cruzi. Int. J. Biochem.3, 145–150 (1972)

    Google Scholar 

  • Crogan, P.C.: The mechanism of osmotic regulation inArtemia salina (L.): The physiology of the gut. J. exp. Biol.35, 243–249 (1958)

    Google Scholar 

  • Dall, W.: Studies on the physiology of a shrimp,Metapenaeus sp. (Crustacea: Decapoda: Penaeidae). Aust. J. Mar. Freshwater Res.16, 181–203 (1965)

    Google Scholar 

  • Dall, W.: The functional anatomy of the digestive tract of a shrimpMetapenaeus bennettae Racek & Dall (Crustacea: Decapoda: Penaeidae). Aust. J. Zool.15, 699–714 (1967)

    Google Scholar 

  • Eposito, G., Czaky, T.Z.: Extracellular space in the epithelium of rat's small intestine. Amer. J. Physiol.226, 50–65 (1974)

    Google Scholar 

  • Florkin, M.: Ecology and metabolism. In: The physiology of crustacea, Vol. 1 (ed. T. Waterman), pp. 395–410. New York: Academic Press 1960

    Google Scholar 

  • Frederick, P.K., Reiser, S., Christiansen, P.A.: Effect of inhibitors on Na+-independent lysine transport in intact intestine. Proc. Soc. exp. Biol.142, 988–992 (1973)

    Google Scholar 

  • Gillespie, E.: Homo- and hetero-exchange diffusion of amino acids in Ehrlich ascites carcinoma cells. Biochem. Biophys. Acta135, 1016–1029 (1967)

    Google Scholar 

  • Gross, W., Burkhardt, K.L.: Multiple transportation systems for basic amino acids inStreptomyces hydrogenans. Biochem. Biophys. Acta298, 437–445 (1973)

    Google Scholar 

  • Hajjar, J.J., Khuri, R.N., Bizri, H.: Lysine transport in turtle ventricle. I. Effect of ouabain and extracellular ions on lysine accumulation. Comp. Biochem. Physiol.46, 45–56 (1973a)

    Google Scholar 

  • Hajjar, J.J., Khuri, R.N., Bizri, J.: Lysine transport in turtle ventricle. II. Effect of extracellular ions and ouabain on lysine fluxes. Comp. Biochem. Physiol.46, 57–64 (1973b)

    Google Scholar 

  • Hampton, J.R.: Lysine transport in the form ofTrypanosoma cruzi: kinetics and inhibition of uptake by structural analogues. Int. J. Biochem.1, 706–714 (1970)

    Google Scholar 

  • Herzberg, G.R., Lerner, J.: The effect of preloaded amino acids on lysine and homoarginine transport in chicken small intestine. Comp. Biochem. Physiol.44, 1–16 (1973)

    Google Scholar 

  • Herzberg, G.R., Sheerin, H., Lerner, J.: Catronic amino acid transport in chicken small intestine. Comp. Biochem. Physiol.40, 229–247 (1971)

    Google Scholar 

  • Jeuniaux, C.: Hemolymph —Arthropoda. In: Chemical zoology, Vol. VI (Part B) (eds. M. Florkin, B.T. Scheer), pp. 64–118. New York: Academic Press 1971

    Google Scholar 

  • Jungreis, A.M.: Comparative aspects of invertebrate epithelial transport. In: Water relations in membrane transport in animals and plants (eds. A.M. Jungleis, T. Hodges, A.M. Kleinzeller, S.G. Schultz), pp. 89–96. New York: Academic Press 1977

    Google Scholar 

  • Jungreis, A.M., Vaughan, G.L.: Insensitivity of lepidopteran tissues to ouabain. I. Absence of ouabain binding and Na-K ATPase in larval and adult midgut. J. Insect Physiol.23, 503–509 (1977)

    Google Scholar 

  • Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Amer. Chem. Soc.56, 658–666 (1934)

    Google Scholar 

  • Maginniss, L.A., Ahearn, G.A.: Kinetics of glucose transport by the perfused midgut of the freshwater shrimp,Macrobrachium rosenbergii. J. Physiol.271, 319–336 (1977)

    Google Scholar 

  • Mantel, L.H.: The foregut ofGecarcinus lateralis as an organ of salt and water balance. Amer. Zool.8, 434–442 (1968)

    Google Scholar 

  • Maynard, L.A., Loosli, J.K.: Animal nutrition. New York: McGraw-Hill Co. 1969

    Google Scholar 

  • McIver, D.J.L., Macknight, A.D.C.: Extracellular space in some isolated tissues. J. Physiol.239, 31–59 (1974)

    Google Scholar 

  • Munck,, B.G., Schultz, S.G.: Lysine transport across isolated rabbit ileum. J. gen. Physiol.53, 157–182 (1969)

    Google Scholar 

  • Parsons, D.S., Prichard, J.S.: Properties of some model systems for transcellular active transport. Biochem. Biophys. Acta126, 471–486 (1966)

    Google Scholar 

  • Peterson, S.C., Goldner, A.M., Curran, P.F.: Glycine transport in rabbit ileum. Amer. J. Physiol.219, 1027–1032 (1970)

    Google Scholar 

  • Prosser, C.L. (ed.): Comparative Animal Physiology. Philadelphia: W.B. Saunders Co. 1973

    Google Scholar 

  • Reiser, S., Christiansen, P.A.: Stimulation of basic amino acid uptake by certain neutral amino acids in isolated intestinal epithelial cells. Biochem. Biophys. Acta241, 102–113 (1971)

    Google Scholar 

  • Reiser, S., Christiansen, P.A.: A basis for the difference in the inhibition of the uptake of various neutral amino acids by lysine in intestinal epithelial cells. Biochem. Biophys. Acta226, 217–229 (1972)

    Google Scholar 

  • Reiser, S., Christiansen, P.A.: The properties of Na+-dependent and Na+-independent lysine uptake by isolated intestinal epithelial cells. Biochem. Biophys. Acta307, 212–222 (1973a)

    Google Scholar 

  • Reiser, S., Christiansen, P.A.: Exchange transport and amino acid charge as the basis for Na+-independent lysine uptake by isolated intestinal epithelial cells. Biochem. Biophys. Acta307, 223–233 (1973b)

    Google Scholar 

  • Schultz, S.G., Curran, P.F.: Coupled transport of sodium and organic solutes. Physiol. Rev.50, 637–718 (1970)

    Google Scholar 

  • Smith, P.G.: The ionic relations ofArtemia salina (L.). II. Fluxes of sodium, chloride, and water. J. exp. Biol.51, 739–757 (1969)

    Google Scholar 

  • Southworth, G.C., Read, C.P.: Absorption of some amino acids by the haemoflagellate,Trypanosoma gambiense. Comp. Biochem. Physiol.41A, 905–911 (1972)

    Google Scholar 

  • Speck, U., Urich, K.: Das Schicksal der Nährstoffe bei dem FlußkrebsOrcomectes limosus. II. Resorption U-14C-markierter Nährstoffe und ihre Verteilung auf die Organe. Z. vergl. Physiol.68, 318–333 (1970)

    Google Scholar 

  • Thier, S.O.: Amino acid accumulation in the toad bladder. Relationship to transepithelial Na transport. Biochem. Biophys. Acta150, 253–262 (1968)

    Google Scholar 

  • Thomas, E.L., Shao, T.C., Christensen, H.N.: Structural selectivity in interaction of neutral amino acids and alkali metal ions with a cationic amino acid transport system. J. biol. Chem.246, 1677–1681 (1971)

    Google Scholar 

  • Vaughan, G.L., Jungreis, A.M.: Insensitivity of lepidopterous tissues to ouabain. Physiological mechanisms which block inhibition of ouabain in ouabain-sensitive tissues. J. Insect Physiol.23, (In press, 1977)

  • Vonk, H.J.: Digestion and metabolism. In: The physiology of crustacea, Vol. 1 (ed. T.H. Waterman), pp. 291–316. New York: Academic Press 1960

    Google Scholar 

  • Weel, P.B. van: Processes of secretion, restitution and resorption in gland of mid-gut (glandula media intestini) ofAtya spinipes (Decapoda-Brachyura). Physiol. Zool.28, 40–54 (1955)

    Google Scholar 

  • Yonge, C.M.: Studies on the comparative physiology of digestion. II. The mechanism of feeding, digestion and assimilation inNephrops norvegicus. J. exp. Biol.1, 343–390 (1924)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 539 from the Hawaii Institute of Marine Biology, Kaneohe, Hawaii

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brick, R.W., Ahearn, G.A. Lysine transport across the mucosal border of the perfused midgut in the freshwater shrimp,Macrobrachium rosenbergii . J Comp Physiol B 124, 169–179 (1978). https://doi.org/10.1007/BF00689178

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689178

Keywords

Navigation