Skip to main content
Log in

Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The life span of worker-honeybees is determined by the duration of the hive-period and of the foraging period (Figs. 1,2). The duration of the forgaing period is regulated in the following way: Total flight performance of the individual bee seems to be fixed. Daily flight performance strongly affects total flight duration. High daily flight performance decreases maximal flight duration and vice versa.

Foragers accumulate the highest glycogen reserves in the flight muscles compared to other stages (Figs. 3, 4). They use these reserves to overcome starvation or when growing old. Young foragers are able to restore glycogen reserves after sugar intake, whereas old foragers were found to have a reduced glycogen synthesizing ability (Fig. 5).

The results indicate that bees exhaust their energysupplying mechanisms after a definite total flight performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman RC (1971) Age-dependent effects in enzyme induction — a biochemical expression of aging. Exp Gerontol 6:75–87

    Google Scholar 

  • Bulos B, Shukla S, Sacktor B (1972) Bioenergetic properties of mitochondria from flight muscle of aging blowflies. Arch Biochem Biophys 149:461–469

    Google Scholar 

  • Burcombe JV (1972) Changes in enzyme levels during ageing inDrosophila melanogaster. Mech Ageing Dev 1:213–225

    Google Scholar 

  • Free JB, Spencer-Booth Y (1959) The longevity of worker honeybees. Proc R Entomol Soc (A) 34:10–12

    Google Scholar 

  • Frisch K von (1923) Über die “Sprache” der Bienen, eine tierpsychologische Untersuchung. Zool Jahrb Abt Allg Zool Physiol 40:1–186

    Google Scholar 

  • Jaycox ER, Skowronek W, Guynn G (1974) Behavioral changes in worker honeybees (Apis mellifica) induced by injections of a juvenile hormone mimic. Ann Entomol Soc Am 67:529–534

    Google Scholar 

  • Jeffree EP, Allen MD (1957) The annual cycle of pollen storage by honeybees. J Econ Entomol 50:211–212

    Google Scholar 

  • John M (1958) Über den Gesamtkohlenhydrat- und Glycogengehalt der Bienen. Z Vergl Physiol 41:204–220

    Google Scholar 

  • Johnson BG, Rowley WA (1972) Ultrastructural changes inCulex tarsalis flight muscle associated with exhaustive flight. J Insect Physiol 18:2391–2399

    Google Scholar 

  • Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34:299–345

    Google Scholar 

  • Lundie AE (1925) The flight activity of the honeybee. US Dep Agricult Bull 1328:1–37

    Google Scholar 

  • Martin U, Martin H, Lindauer M (1978) Transplantation of a time-signal in honeybees. J Comp Physiol 124:193–201

    Google Scholar 

  • Maurizio A (1950) Untersuchungen über den Einfluß der Pollennahrung und Brutpflege auf die Lebensdauer und den physiologischen Zustand der Bienen. Schweiz Bienenzg 73:58–65

    Google Scholar 

  • Miquel J (1971) Aging of maleDrosophila melanogaster: Histological, histochemical and ultrastructural observations. Adv Gerontol Res 3:39–70

    Google Scholar 

  • Nayar JK, Handel E van (1971) The fuel for sustained mosquito flight. J Insect Physiol 17:471–481

    Google Scholar 

  • Ragland SS, Sohal RS (1975) Ambient temperature, physical activity and aging in the house fly,Musca domestica. Exp Gerontol 10:279–290

    Google Scholar 

  • Rockstein M (1950) Glycogen metabolism in insects: a review. Bull Brooklyn Entomol Soc 45:74–81

    Google Scholar 

  • Rockstein M (1972) The role of molecular genetic mechanisms in the aging process. In: Rockstein M, Baker GT III (eds) Molecular genetic mechanisms in development and aging. Academic Press, New York, pp 1–10

    Google Scholar 

  • Roe JH, Dailey RE (1966) Determination of glycogen with the anthrone reagent. Anal Biochem 15:245–250

    Google Scholar 

  • Rowley WA, Graham CL (1968) The effect of age on the flight performance of femaleAedes aegypti mosquitoes. J Insect Physiol 14:719–728

    Google Scholar 

  • Rutz W, Imboden H, Jaycox ER, Wille H, Gerig L, Lüscher M (1977) Juvenile hormone and polyethism in adult worker honeybees (Apis mellifica). Proc 8th Int Congr IUSSI, Wageningen

  • Sachs L (1973) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sacktor B (1970) Regulation of intermediary metabolism, with special reference to the control mechanisms in insect flight muscle. Adv Insect Physiol 7:267–347

    Google Scholar 

  • Sohal RS (1976) Metabolic rate and life span. In: Cutler RG (ed) Cellular ageing, part I, vol 9, Interdisciplinary topics in gerontology. Karger, Basel, pp 25–40

    Google Scholar 

  • Tribe MA (1967) Age related changes in the respiratory physiology of flight muscle tissues from the blowfly,Calliphora erythrocephala. Exp Gerontol 2:113–121

    Google Scholar 

  • Tribe MA (1972) Biochemical and structural variations in the flight muscle mitochondria of ageing blowflies,Calliphora erythrocephala. J Cell Sci 10:443–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neukirch, A. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J Comp Physiol B 146, 35–40 (1982). https://doi.org/10.1007/BF00688714

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688714

Keywords

Navigation