Skip to main content
Log in

Far infrared spectrum, conformational stability, barriers to internal rotation, vibrational assignment, and ab initio calculations of 2-chloro-3-fluoropropene

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The far infrared spectrum (375 to 30 cm−1) of gaseous 2-chloro-3-fluoropropene, CH2=C(CH2F)CI, has been recorded at a resolution of 0.10 cm−1. The fundamental asymmetric torsional mode is observed at 117.5 cm−1 with ten excited states falling to low frequency for thes-cis (fluorine atom eclipsing the double bond) conformer. For the higher energy gauche conformer, the asymmetric torsion is estimated to be at 94 cm−1. From these data the asymmetric torsional potential function has been calculated. The potential function coefficients are calculated to be in cm−1):V 1=803±21,V 2=−94±21,V 3= 1025±10,V 4=95±10, andV 6=2±1, with an enthalpy difference between the more stables-cis and gauche conformera of 550±100 cm−1 (1.57±0.29 kcal/mol). This function gives values of 1227±50cm−1(3.51±0.14kcal/mol), 1266±200 cm−1 (3.62±0.57 kcal/mol), and 665±100 cm−1 (1.90±0.29 kcal/mol), for thes-cis to gauche, gauche to gauche, and gauche tos-cis barriers, respectively. From the relative intensities of the Raman lines of the gas at 652 cm−1 (gauche) and 731 cm−1 (s-cis) as a function temperature, the enthalpy difference is found to be 565±96 cm−1 (1.62±0.27 kcal/mol). However, the more polar gauche conformer remains in the crystalline solid. The Raman spectrum of the gas has been recorded from 3500 to 70 cm−1 and, utilizing these data and the previously reported infrared data, a complete vibrational analysis is proposed for both conformers. The conformational stability, barriers to internal rotation, fundamental vibrational frequencies, and structural parameters that have been determined experimentally are compared to those obtained from ab initio Hartree-Fock gradient calculations employing both the 3–21 G* and 6–31G* basis sets and to the corresponding quantities for some similar molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durig, J. R.; Zhen, M.; Little, T. S.J. Chem. Phys. 1984,81, 4259.

    Google Scholar 

  2. Durig, J. R.; Zhen, M.; Heusel, H. L.; Joseph, P. J.; Groner, P.; Little, T. S.J. Phys. Chem. 1985,89, 2877.

    Google Scholar 

  3. Durig, J. R.; Geyer, T. J.; Little, T. S.; Durig, D. T.J. Mol. Struct. 1988,172, 165.

    Google Scholar 

  4. Durig, J. R.; Qiu, H. Z.; Durig, D. T.; Zhen, M.; Little, T. S.J. Phys. Chem. 1991,95, 2745.

    Google Scholar 

  5. Hirota, E.J. Mol. Spectrosc. 1970,35, 9.

    Google Scholar 

  6. Silvi, B.; Sourisseau C.Spectrochim. Acta 1975,31A, 565.

    Google Scholar 

  7. Silvi, B.; Sourisseau C.J. Chem. Phys. 1976,73, 101.

    Google Scholar 

  8. Hornischer, P.; Moser, H.Spectrochim. Acta 1972,29A, 81.

    Google Scholar 

  9. Verma, A. L.J. Mol. Spectrosc. 1971,39, 247.

    Google Scholar 

  10. Meakin, P.; Harris, D. O.; Hirota, E.J. Chem. Phys. 1969,51, 3775.

    Google Scholar 

  11. McLauchlan, R. D.; Nyquist, R. A.Spectrochim. Acta 1968,24A, 103.

    Google Scholar 

  12. Hirota, E.J. Chem. Phys. 1965,42, 2071.

    Google Scholar 

  13. Gross, B.; Forel, M. T.;J. Chim. Phys. 1965,62, 1163.

    Google Scholar 

  14. Griffith, G. H.; Harrah, L. A.; Clark, J. W.; Durig, J. R.J. Mol. Struct. 1969,4, 255.

    Google Scholar 

  15. Pierce, L.; O'Reilley, J. M.;J. Mol. Spectrosc. 1959,3, 536.

    Google Scholar 

  16. Bell, S.; Guirgis, G. A.; Fanning, A. R.; Durig, J. R.J. Mol. Struct. 1988,178, 63.

    Google Scholar 

  17. Good, W.; Conan, R. J.; Bauder, A.; Gunthard, Hs. H.;J. Mol. Spectrosc. 1912,41, 381.

    Google Scholar 

  18. Unland, M. L.; Weiss, V.; Flygare, W. H.J. Chem. Phys. 1965,42, 2138.

    Google Scholar 

  19. Meyer, R.; Hunziker, H.; Gunthard, Hs. H.Spectrochim. Acta 1967,23A, 1775.

    Google Scholar 

  20. Groner, P.; Bauder, A.; Gunthard, Hs. H.Sympos. Mol. Struct. Spectrosc. 1978, Ohio State Univ., paper T110.

  21. Sovik, O. L.; Schei, S. H.; Stolevik, R.; Hagen, K.; Shen, Q.J. Mol. Struct. 1984,116, 239.

    Google Scholar 

  22. Sovik, O. L.; Trongmo, Q.; Hagen, K.; Schei, S. H.; Stolevik, R.; Shen, Q.J. Mol. Struct. 1984,118, 1.

    Google Scholar 

  23. Trongmo, Q.; Shen, Q.; Hagen, K.; Seip, R.J. Mol. Struct. 1981,71, 185.

    Google Scholar 

  24. Torgrimsen, T.; and Klaboe, P.;J. Mol. Struct. 1974,20, 229.

    Google Scholar 

  25. Torgrimsen, T.; and Klaboe, P.; Nicolaisen, F.J. Mol. Struct. 1974,20, 15.

    Google Scholar 

  26. Klaboe, P.; Torgrimsen, T.; Christensen, D.H.J. Mol. Struct. 1974,23, 15.

    Google Scholar 

  27. Samdal, S.; Seip, H. M.; Torgrimsen, T.J. Mol. Struct. 1977,42, 153.

    Google Scholar 

  28. Pattison, F. M. L.; Norman, J. J.J. Am. Chem. Soc. 1979,79, 2311.

    Google Scholar 

  29. Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; DeFrees, D. J.; Seeger, R.; Whiteside, D. J.; Fox, D. J.; Fleuder, E. M.; Pople, J. A.;Gaussian-86, Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, 1986.

    Google Scholar 

  30. Pulay, P.Mol. Phys. 1969,17, 197.

    Google Scholar 

  31. Wilson, E. B.; Decius, J. C.; Cross, P. C.;Molecular Vibrations, McGraw-Hill, New York, 1955.

    Google Scholar 

  32. Schachtschneider, J. H.Vibrational Analysis of Molecules, V and VII, Shell Development Co., Houston, TX, Technical Report Nos. 231 and 57; 1964 and 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durig, D.T., Guirgis, G.A. & Durig, J.R. Far infrared spectrum, conformational stability, barriers to internal rotation, vibrational assignment, and ab initio calculations of 2-chloro-3-fluoropropene. Struct Chem 3, 347–361 (1992). https://doi.org/10.1007/BF00678558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00678558

Keywords

Navigation