Skip to main content
Log in

Uncertainty and complementarity in axiomatic quantum mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work an investigation of the uncertainty principle and the complementarity principle is carried through. A study of the physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point for this analysis. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. In this general framework two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. The sufficiency of the state system guarantees that the observables satisfying the uncertainty principle are unbounded and noncompatible. The complementarity principle implies a non-Boolean proposition structure for the theory. Moreover, nonconstant complementary observables are always noncompatible. The uncertainty principle and the complementarity principle, as formulated in this work, are mutually independent. Some order is thus brought into the confused discussion about the interrelations of these two important principles. A comparison of the present formulations of the uncertainty principle and the complementarity principle with the Jauch formulation of the superposition principle is also given. The mutual independence of the three fundamental principles of the quantum theory is hereby revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballentine, L. E. (1970). “The Statistical Interpretation of Quantum Mechanics,”Reviews of Modem Physics,42, 358–381.

    Google Scholar 

  • Belinfante, F. J. (1978).Conventional Quantum Theory. Publications of the University of Joensuu, Series B1, No. 14, pp. 17–69.

    Google Scholar 

  • Beltrametti, E. G. and Cassinelli, G. (1976). “Logical and Mathematical Structures of Quantum Mechanics,”Rivista del Nuovo Cimento,6, (2) 321–404.

    Google Scholar 

  • Bohr, N. (1925). “Atomic Theory and Mechanics.” Reprinted in Bohr (1978).

  • Bohr, N. (1927). “The Quantum Postulate and the Recent Development of Atomic Theory.” Reprinted in Bohr (1978).

  • Bohr, N. (1929). “Introductory Survey.” Reprinted in Bohr (1978).

  • Bohr, N. (1935). “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?”Physical Review,48, 696–702.

    Google Scholar 

  • Bohr, N. (1937). “Causality and Complementarity,”Philosophy of Science,4, 289–298.

    Google Scholar 

  • Bohr, N. (1939). “The Causality Problem in Atomic Physics,”New Theories in Physics, 11–45.

  • Bohr, N. (1948). “On the Notions of Causality and Complementarity,”Dialectica,1, 313–319.

    Google Scholar 

  • Bohr, N. (1949). “Discussion with Einstein on Epistemological Problems in Atomic Physics,” inAlbert Einstein: Philosopher-Scientist (The Library of Living Philosophers Inc., Evanston). Reprinted in Bohr (1958b).

    Google Scholar 

  • Bohr, N. (1958a). “Causality and Complementarity.” Reprinted in Bohr (1963).

  • Bohr, N. (1958b).Atomic Physics and Human Knowledge. John Wiley & Sons, New York.

    Google Scholar 

  • Bohr, N. (1963).Essays 1958–1962on Atomic Physics and Human Knowledge. Richard Clay Company, Ltd., Bungay, Suffolk, Great Britain.

    Google Scholar 

  • Bohr, N. (1978).Atomic Theory and the Description of Nature. AMS Press, New York. Originally published in Cambridge at the University Press, 1934.

    Google Scholar 

  • de Broglie, L. (1925). “Investigations on Quantum Theory.”Annales de Physique,3, 22. This is the text of de Broglie's 1924 doctoral thesis, Partly reprinted inWave Mechanics, G. Ludwig, Pergamon Press, New York 1968.

    Google Scholar 

  • Bugajska, K. and Bugajski, S. (1973). “The Projection Postulate in Quantum Logic,”Bulletin de l' Académie Polonaise des Sciences, Serie des Sciences, Mathematiques, Astronomiques et Physiques,21, 873–877.

    Google Scholar 

  • Bugajski, S. (1978). Private communication.

  • Dirac, P. A. M. (1958).The Principles of Quantum Mechanics. Oxford University Press, London. First edition 1930.

    Google Scholar 

  • Einstein, A. Podolsky, B. and Rosen, N. (1935). “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”Physical Review,47, 777–780.

    Google Scholar 

  • d'Espagnat, B. (1976).Conceptual Foundations of Quantum Mechanics. Benjamin, Reading, Massachusetts. First edition 1971.

    Google Scholar 

  • Finkelstein, D. (1978). “The Delinearization of Physics,” inProceedings of the Symposium on the Foundations of Modem Physics, Publications of the University of Joensuu, Series B1, No. 14, pp. 169–191.

    Google Scholar 

  • van Fraassen, B. C. (1977). “Relative Frequencies,”Synthese,34, 133–166.

    Google Scholar 

  • Garrison, J. C. and Wong, J. (1970). “Canonically Conjugate Pairs, Uncertainty Relations, and Phase Operators,”Journal of Mathematical Physics,11, 2242–2249.

    Google Scholar 

  • Giere, R. N. (1973). “Objective Single-Case Probabilities and the Foundations of Statistics,” inStudies in Logic and the Foundations of Mathematics, Vol. 74, pp. 467–483. Suppes et al., eds. PWN-Polish Scientific Publishers, Warszawa.

    Google Scholar 

  • Giere, R. N. (1976). “A Laplacean Formal Semantics for Single-Case Propensities,”Journal of Philosophical Logic,5, 321–353.

    Google Scholar 

  • Greechie, R. J. (1969). “An Orthomodular Poset With a Full Set of States Not Embeddable in Hilbert Space,”Carribbean Journal of Science and Mathematics,1, 15–26.

    Google Scholar 

  • Greechie, R. J. and Gudder, S. P. (1973). “Quantum Logics,” inContemporary Research in the Foundations and Philosophy of Quantum Theory, C. A. Hooker, ed., pp. 143–173. D. Reidel, Dordrecht.

    Google Scholar 

  • Grünbaum, A. (1957). “Complementarity in Quantum Physics and Its Philosophical Generalization,”The Journal of Philosophy,LIV,23, 713–727.

    Google Scholar 

  • Grätzer, G. (1978).General Lattice Theory, Akademie, Berlin.

    Google Scholar 

  • Gudder, S. P. (1967). “Coordinate and Momentum Observables in Axiomatic Quantum Mechanics,”Journal of Mathematical Physics,8, 1848–1858.

    Google Scholar 

  • Gudder, S. P. (1970a). “A Superposition Principle in Physics,”Journal of Mathematical Physics,11, 1037–1040.

    Google Scholar 

  • Gudder, S. P. (1970b). “Axiomatic Quantum Mechanics and Generalized Probability Theory,” inProbabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid, ed., pp. 53–129. Academic, New York.

    Google Scholar 

  • Gudder, S. P. (1977). “Four Approaches to Axiomatic Quantum Mechanics,” inThe Uncertainty Principle and Foundations of Quantum Mechanics, W. C. Price and S. S. Chissick, eds., pp. 247–276. John Wiley & Sons, London.

    Google Scholar 

  • Gudder, S. P. (1978). “Some Unsolved Problems in Quantum Logics,”Mathematical Foundations of Quantum Theory, A. R. Marlow, ed., pp. 87–103. Academic Press, New York.

    Google Scholar 

  • Guz, W. (1978). “On the Lattice Structure of Quantum Logics,”Annales de l'Institut Henri Poincare,XXVIII,1, 1–7.

    Google Scholar 

  • Halmos, P. R. (1950).Measure Theory, van Nostrand, Princeton, New Jersey.

    Google Scholar 

  • Heisenberg, W. (1927). “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,”Zertschrift für Physik,43, 172–198.

    Google Scholar 

  • Heisenberg, W. (1949).The Physical Principles of the Quantum Theory, Dover, New York, Originally published by the University of Chicago Press in 1930.

    Google Scholar 

  • Heisenberg, W. (1955). “The Development of the Interpretation of the Quantum Theory,” inNiels Bohr and the Development of Physics, W. Pauli, ed., pp. 12–29. Pergamon, London.

    Google Scholar 

  • Heisenberg, W. (1958).Physics and Philosophy. Harper & Row, New York.

    Google Scholar 

  • Heisenberg, W. (1967). “Quantum Theory and Its Interpretation,” inNiels Bohr; His Life and Work as Seen by His Friends and Colleagues, S. Rozental, ed. North-Holland, Amsterdam.

    Google Scholar 

  • Heisenberg, W. (1977). “Remarks on the Origin of the Relations of Uncertainty,”The Uncertainty Principle and Foundations of Quantum Mechanics, W. C. Price and S. S. Chissick, eds., pp. 3–6. John Wiley & Sons, London.

    Google Scholar 

  • Holton, G. (1970). “The Roots of Complementarity,”Daedalus,99, 1015–1055.

    Google Scholar 

  • Hooker, C. A. (1972). “The Nature of Quantum Mechanical Reality: Einstein Versus Bohr,” inParadigms and Paradoxes. The Philosophical Challenge of the Quantum Domain, R. G. Colodny, ed, pp. 67–302. University of Pittsburgh Press, Pittsburgh.

    Google Scholar 

  • Jammer, M. (1966).The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  • Jammer, M. (1974).The Philosophy of Quantum Mechanics, John Wiley & Sons, New York.

    Google Scholar 

  • Jammer, M. (1978). “A Consideration of the Philosophical Implications of the New Physics,” private communication.

  • Janowitz, M. F. (1963). Quantifiers on Quasi-orthomodular Lattices, Ph.D dissertation, Wayne State University.

  • Jauch, J. M. (1968).Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Jauch, J. M. (1976). “The Quantum Probability Calculus,” inLogic and Probability in Quantum Mechanics, P. Suppes, ed., pp. 123–146. Reidel, Dordrecht.

    Google Scholar 

  • Lahti, P. J. (1976a). “How the Uncertainty Principle leads to a modification of some classical concepts,”Arkhimedes,28, 11–19.

    Google Scholar 

  • Lahti, P. J. (1976b). Epärelativistisen kvanttimekaniikan matemaattisesta rakenteesta. Licenciate thesis, The University of Turku.

  • Lahti, P. J. (1978). “Uncertainty Principle and Complementarity in Axiomatic Quantum Mechanics,”Reports on Mathematical Physics, in print.

  • Lahti, P. J. (1979). “On the expectation value of an observable in quantum logic,”Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences, Mathematiques, Astronomiques et Physiques,27, 603–608.

    Google Scholar 

  • Loeve, M. (1955).Probability Theory, van Nostrand Company, New York.

    Google Scholar 

  • Mackey, G. W. (1963).Mathematical Foundations of Quantum Mechanics. Benjamin, New York.

    Google Scholar 

  • Maczynski, M. J. (1967). “A Remark on Mackey's Axiom System for Quantum Mechanics,”Bulletin de l'Academie Polonaise des Sciences, Seri des Sciences, Mathematiques, Astronomiques et Physiques,15, 583–587.

    Google Scholar 

  • Maczynski, M. J. (1973). “The Orthogonality Postulate in Axiomatic Quantum Mechanics,”International Journal of Theoretical Physics,8, 353–360.

    Google Scholar 

  • Maczynski, M. J. (1980). “Characterization of Commutativity in Quantum Logics,”Current Issues in Quantum Logic, E. G. Beltrametti and B. van Fraassen, eds., Plenum, New York.

    Google Scholar 

  • Margenau, H. (1937). “Critical Points in Modern Physical Theory,”Philosophy of Science,4, 337–370.

    Google Scholar 

  • Messiah, A. (1961).Quantum Mechanics I. North-Holland, Amsterdam.

    Google Scholar 

  • von Neumann, J. (1950).Functional Operators II. The Geometry of Orthogonal Spaces. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, New Jersey. Originally published in 1932.

    Google Scholar 

  • Packel, E. W. (1974). “Hilbert space operators and Quantum Mechanics,”American Mathematics Monthly,81, 863–873.

    Google Scholar 

  • Petersen, A. (1963). “The Philosophy of Niels Bohr,”Bulletin of Atomic Science, 8–14.

  • Petersen, A. (1968).Quantum Physics and The Philosophical Tradition. M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Piron, C. (1976).Foundations of Quantum Physics. Benjamin, Reading, Massachusetts.

    Google Scholar 

  • Popper, K. R. (1957). “The propensity interpretation of the calculus of probability, and the quantum theory,” inObservation and Interpretation in the Philosophy of Physics, S. Körner, ed.

  • Popper, K. R. (1959). “The Propensity Interpretation of Probability,”British Journal of the Philosophy of Science,10, 25–42.

    Google Scholar 

  • Popper, K. R. (1963).Conjectures and Refutations. Routledge and Kegan Paul, London.

    Google Scholar 

  • Popper, K. R. (1967). “Quantum Mechanics without The Observer,” inQuantum Theory and Reality, M. Bunge, ed., pp. 7–44. Springer, Berlin.

    Google Scholar 

  • Popper, K. R. (1968). The Logic of Scientific Discovery. Hutchinsons, London. Originally published in 1934.

    Google Scholar 

  • Prugovecki, E. (1971).Quantum Mechanics in Hilbert Space. Academic, New York.

    Google Scholar 

  • Putnam, C. R. (1967).Commutation Properties of Hilbert Space Operators and Related Topics. Springer, Berlin.

    Google Scholar 

  • Rosenfeld, L. (1961). “Foundations of Quantum Theory and Complementarity,”Nature,190, 384–388.

    Google Scholar 

  • Rosenfeld, L. (1963). “Niels Bohr's Contribution to Epistemology,”Physics Today,16, (10) 47–54.

    Google Scholar 

  • Rosenfeld, L. (1967). “Niels Bohr in the Thirties. Consolidation and extension of the conception of complementarity,” inNiels Bohr: His Life and Work as Seen by His Friends and Colleagues, S. Rozental, ed., pp. 114–136. North-Holland, Amsterdam.

    Google Scholar 

  • Rosenfeld, L. (1971). “Unphilosophical Considerations oa Causality in Physics,” inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merve, eds., pp. 219–235. M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Rosenfeld, L. (1972). “Niels Bohr. Biographical Sketch,” inNiels Bohr Collected Works I, XVII–XLVIII, L. Rosenfeld, general ed. North-Holland, Amsterdam.

    Google Scholar 

  • Schrödinger, E. (1926a). “Quantization as an Eigenvalue Problem,”Annalen der Physik,79, 361. Reprinted inWave Mechanics, G. Ludwig, Pergamon, New York (1968).

    Google Scholar 

  • Schrödinger, E. (1926b). “Quantization as an Eigenvalue Problem,”Annalen der Physik,79, 489. Reprinted in Wave Mechanics, G. Ludwig, Pergamon, New York (1968).

    Google Scholar 

  • Strauss, M. (1973). “Logics for Quantum Mechanics,”Foundations of Physics,3, 265–276.

    Google Scholar 

  • Varadarajan, V. S. (1968).Geometry of Quantum Theory I. Van Nostrand Reinhold, New York.

    Google Scholar 

  • von Weizsäcker, C. F. (1955). “Komplementarität und Logik,”Die Naturwissenschaften 42, 521–529.

    Google Scholar 

  • von Weizsäcker, C. F. (1971). “The Copenhagen Interpretation,” inQuantum Theory and Beyond, T. Bastin, ed., pp. 25–31. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • von Weizsäcker, C. F. (1973). “Classical and Quantum Descriptions,” inThe Physicists's Conception of Nature, J. Mehra, ed., pp. 635–667. Reidel, Dordrecht.

    Google Scholar 

  • von Weizsäcker, C. F. (1973b). “Probability and Quantum Mechanics,”British Journal of the Philosophy of Science,24, 321–337.

    Google Scholar 

  • Wick, G. C. Wightman, A. S. and Wigner, E. (1952). “The intrinsic parity of elementary particles,”Physical Review,88, 101–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahti, P.J. Uncertainty and complementarity in axiomatic quantum mechanics. Int J Theor Phys 19, 789–842 (1980). https://doi.org/10.1007/BF00670506

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670506

Keywords

Navigation