Skip to main content
Log in

Antifacilitation and facilitation in the cardiac ganglion of the spiny lobsterPanulirus interruptus

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Antifacilitation and facilitation of synaptic transmission between cell 6 and the large cells were studied in the spiny lobster cardiac ganglion. Two-impulse experiments invariably produced antifacilitation in the second large-cell PSP at all inter-pulse intervals (10 msec to 10 sec) (Fig. 2). When conditioning trains with 2–4 impulses preceded the test impulse, the test PSP was antifacilitated at intervals of less than 100 msec and usually facilitated at intervals greater than 100 msec (Fig. 3). At intervals shorter than 50 msec the test PSP amplitude was nearly independent of the number of conditioning impulses. At greater intervals, the test PSP amplitude was a linear function of the number of impulses in the conditioning train (Fig. 4 and 5). A model was constructed based on the assumption thatF (defined asV T /V 0, whereV 0 andV T are the control and test PSP amplitudes, respectively) is the sum of antifacilitation (F ) and facilitation (F +) (Fig. 9).F depends only on the separation between the last conditioning impulse and the test impulse and is described by the equation:\(F^ - = 1.0 - A_1 e^{{{ - t} \mathord{\left/ {\vphantom {{ - t} {\tau _1 }}} \right. \kern-\nulldelimiterspace} {\tau _1 }}} - A_2 e^{{{ - t} \mathord{\left/ {\vphantom {{ - t} {\tau _2 }}} \right. \kern-\nulldelimiterspace} {\tau _2 }}} \), wheret is the conditioning-to-test interval in seconds,A 1=0.26,A 2=0.74,τ 1=0.02 sec, andτ 2=4.1 sec.F + is described by the equationN C \((1 - e^{{{ - t} \mathord{\left/ {\vphantom {{ - t} {\tau _4 }}} \right. \kern-\nulldelimiterspace} {\tau _4 }}} )^2 \cdot e^{{{ - t} \mathord{\left/ {\vphantom {{ - t} {\tau _3 }}} \right. \kern-\nulldelimiterspace} {\tau _3 }}} \), whereN is the number of conditioning impulses,t is the interval between the end of the conditioning train and the test impulses,τ 3=3.6 sec,τ 4=0.08 sec, andC is a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M., Cooke, I.: Neural activation of the heart of the lobsterHomarus americanus. J. exp. Biol.55, 449–468 (1971)

    Google Scholar 

  • Atwood, H. L., Lang, F.: Differential responses of crab neuromuscular synapses to cesium ion. J. gen. Physiol.61, 747–766 (1973)

    Google Scholar 

  • Betz, W. J.: Depression of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.)206, 629–644 (1970)

    Google Scholar 

  • Bittner, G.: Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J. gen. Physiol.51, 731–758 (1968)

    Google Scholar 

  • Braun, M., Schmidt, R. F., Zimmerman, M.: Facilitation at the frog neuromuscular junction during and after repetitive stimulation. Pflügers Arch. ges. Physiol.287, 41–55 (1966)

    Google Scholar 

  • Bullock, T. H.: Neuromuscular facilitation in scyphomedusae. J. cell. comp. Physiol.22, 251–272 (1943)

    Google Scholar 

  • Christensen, B. N., Martin, A. R.: Estimates of probability of transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.)210, 933–945 (1970)

    Google Scholar 

  • Curtis, D. R., Eccles, J. C.: Synaptic action during and after repetitive stimulation. J. Physiol. (Lond.)150, 374–398 (1960)

    Google Scholar 

  • Del Castillo, J., Katz, B.: Statistical factors involved in neuromuscular facilitation and depression. J. Physiol. (Lond.)124, 574–585 (1954)

    Google Scholar 

  • Dudel, J.: Potential changes in the crayfish motor nerve terminal during repetitive stimulation. Pflügers Arch. ges. Physiol.282, 323–337 (1965)

    Google Scholar 

  • Dudel, J., Kuffler, S. W.: Mechanism of facilitation at the crayfish neuromuscular junction. J. Physiol. (Lond.)155, 530–542 (1961)

    Google Scholar 

  • Elmqvist, D., Quastel, D. M.: A quantitative study of end-plate potentials in isolated human muscle. J. Physiol. (Lond.)178, 505–529 (1965)

    Google Scholar 

  • Frank, E.: Matching of facilitation at the neuromuscular junction of the lobster: a possible case for the influence of muscle on nerve. J. Physiol. (Lond.)233, 635–658 (1973)

    Google Scholar 

  • Friesen, W. O.: Physiology of the spiny lobster cardiac ganglion. Thesis in Neurosciences Department, University of California, San Diego (1974)

    Google Scholar 

  • Friesen, W. O.: Synaptic interactions in the cardiac ganglion of the spiny lobsterPanulirus interruptus. J. comp. Physiol.101, 191–205 (1975)

    Google Scholar 

  • Hagiwara, S., Bullock, T. H.: Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J. cell. comp. Physiol.50, 25–47 (1957)

    Google Scholar 

  • Hagiwara, S., Watanabe, A., Saito, N.: Potential changes in syncytial neurons of lobster cardiac ganglion. J. Neurophysiol.22, 554–572 (1959)

    Google Scholar 

  • Hubbard, J. I.: Repetitive stimulation at the neuromuscular junction and mobilization of transmitter. J. Physiol. (Lond.)169, 641–662 (1963)

    Google Scholar 

  • Hubbard, J. I.: Microphysiology of vertebrate neuromuscular transmission. Physiol. Rev.53, 674–723 (1973)

    Google Scholar 

  • Lang, F., Atwood, H. L.: Crustacean neuromuscular mechanisms: functional morphology of nerve terminals and the mechanism of facilitation. Amer. Zool.13, 337–355 (1973)

    Google Scholar 

  • Liley, A. W.: The quantal components of the mammalian end-plate potential. J. Physiol. (Lond.)133, 571–587 (1956)

    Google Scholar 

  • Liley, A. W., North, K.: An electrical investigation of the effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol.16, 509–527 (1953)

    Google Scholar 

  • Linder, T.: Calcium and facilitation at two classes of crustacean neuromuscular synapses. J. gen. Physiol.61, 56–73 (1973).

    Google Scholar 

  • Livengood, D., Kusano, K.: Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J. Neurophysiol.35, 170–186 (1972)

    Google Scholar 

  • Maeno, T.: Analysis of mobilization and demobilization processes in neuromuscular transmission in the frog. J. Neurophysiol.32, 793–800 (1969)

    Google Scholar 

  • Magleby, K. L.: The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.)234, 327–352 (1973a)

    Google Scholar 

  • Magleby, K. L.: The effect of tetanic and post-tetanic potentiation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.)234, 353–371 (1973b)

    Google Scholar 

  • Mallart, A., Martin, A. R.: An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.)193, 679–694 (1967)

    Google Scholar 

  • Mallart, A., Martin, A. R.: The relation between quantum content and facilitation at the neuromuscular junction of the frog. J. Physiol. (Lond.)196, 593–604 (1968)

    Google Scholar 

  • Martin, A. R.: A further study of the statistical composition of the end-plate potential. J. Physiol. (Lond.)130, 114–122 (1955)

    Google Scholar 

  • Martin, A. R., Pilar, G.: Pre-synaptic and post-synaptic events during post-tetanic potentiation and facilitation in the avian ciliary ganglion. J. Physiol. (Lond.)175, 17–30 (1964)

    Google Scholar 

  • Pantin, C. F. A.: The nerve net of the actinozoa. I. Facilitation. J. exp. Biol.12, 119–138 (1935)

    Google Scholar 

  • Takeuchi, A.: The long-lasting depression in neuromuscular transmission of frog. Jap. J. Physiol.8, 102–113 (1958)

    Google Scholar 

  • Takeuchi, A., Takeuchi, N.: Electrical changes in pre- and postsynaptic axons of the giant synapse ofLoligo. J. gen. Physiol.45, 1181–1193 (1962)

    Google Scholar 

  • Tazaki, K.: Small synaptic potentials in burst activity of large neurons in the lobster cardiac ganglion. Jap. J. Physiol.21, 645–658 (1971)

    Google Scholar 

  • Terzuolo, C., Bullock, T. H.: Acceleration and inhibition in crustacean ganglion cells. Arch. ital. Biol.96, 117–134 (1958)

    Google Scholar 

  • Thies, R. E.: Neuromuscular depression and the apparent depletion of transmitter in mammalian muscle. J. Neurophysiol.28, 427–442 (1965)

    Google Scholar 

  • Wernig, A.: Changes in statistical parameters during facilitation at the crayfish neuromuscular junction. J. Physiol. (Lond.)226, 751–759 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friesen, W.O. Antifacilitation and facilitation in the cardiac ganglion of the spiny lobsterPanulirus interruptus . J. Comp. Physiol. 101, 207–224 (1975). https://doi.org/10.1007/BF00657182

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657182

Keywords

Navigation