Skip to main content
Log in

Solubilization by polysoaps

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aqueous solubilization power of several series of micellar homopolymers and copolymers (“polysoaps”) is investigated. Using five insoluble or poorly water-soluble dyes, comparisons of the capacities are made with respect ot the influence of structural variables such as the polymer backbone, the polymer geometry, the comonomer content, and the charge of the hydrophilic group. Some guidelines for polysoap structures suited for efficient solubilization are established. Noteworthy is that the solubilization capacities of the polysoaps are neither linked to the ability to reduce the surface tension of water, nor to the polarity of the solubilization sites deduced from spectroscopic probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strauss UP (1989) In: Glass JE (ed) Polymers in Aqueous Media. Adv Chemistry Series 223, Am Chem Soc, Washington DC, pp 317–324

    Google Scholar 

  2. Bekturov EA, Bakauova ZKh (1986) In: Synthetic Water-Soluble Polymers in Solution, Hütig & Wepf, Basel, pp 178–188

    Google Scholar 

  3. Anton P, Köberle P, Laschewsky A (1993) Makromol Chem 194:1–27

    Google Scholar 

  4. Solubilization is defined as “the preparation of thermodynamically stable isotropic solutions of substances normally insoluble or slightly soluble in a given solvent by the introduction of an additional amphiphilic component or components”, according to ref. 6, pp 68

  5. McBain MEL, Hutchinson E (1955) in: Solubilization and Related Phenomena, Academic Press, New York

    Google Scholar 

  6. Elworthy PH, Florence AT, MacFarlane CB (1968) in: Solubilization by Surface-Active Agents. Chapman and Hall, London

    Google Scholar 

  7. Oetter G, Hoffmann H (1988/89) J Disp Sci Techn 9:459–492

    Google Scholar 

  8. Strauss UP, Schlesinger MS (1978) J Phys Chem 82:1527–1532

    Google Scholar 

  9. Gao Z, Wasylishen RE, Kwak JCT (1989) Macromolecules 22:2544–2546

    Google Scholar 

  10. Binana-Limbelé W, Zana R (1990) Macromolecules 23:2731–2739

    Google Scholar 

  11. Chu DY, Thomas JK (1991) Macromolecules 24:2212–2216

    Google Scholar 

  12. Paleos CM, Margomenou-Leonidopoulou G, Malliaris A (1988) Mol Cryst Liq Cryst 161:385–394

    Google Scholar 

  13. Yang YJ, Engberts JFBN (1991) J Org Chem 56:4300–4304

    Google Scholar 

  14. Köberle P, Laschewsky A, van den Boogaard D (1992) Polymer 33:4029–4040

    Google Scholar 

  15. Seo T, Take S, Miwa K, Hamada K, Iijima T (1991) Macromolecules 24:4255–4263

    Google Scholar 

  16. Cochin D, Zana R, Candau F (1993) Polymer Int 30:491–498

    Google Scholar 

  17. Strauss UP, Jackson EG (1951) J Polym Sci 5:649–659

    Google Scholar 

  18. Jackson EG, Strauss UP (1951) J Polym Sci 5:473–484

    Google Scholar 

  19. Layton LH, Jackson EG, Strauss UP (1952) J Polym Sci 9:295–308

    Google Scholar 

  20. Strauss UP, Gershfeld NL (1954) J Phys Chem 58:747–753

    Google Scholar 

  21. Medalia AI, Freedman HH, Sinha S (1959) J Polym Sci 40:15–33

    Google Scholar 

  22. Ito K, Ono H, Yamashita Y (1964) J Coll Sci 19:28–39

    Google Scholar 

  23. Kiefer M (1990) Ph.D. thesis, Freiburg (Germany)

  24. Boyer B, Durand S, Lamaty G, Moussamou-Missima JM, Pavia AA, Pucci B, Roque JP, Rouvière J (1991) J Chem Soc Perkin Trans 2:1311–1317

    Google Scholar 

  25. Arai K, Okabe T (1992) Polymer J 24:769–75

    Google Scholar 

  26. Anton P, Laschewsky A (1991) Makromol Chem Rapid Commun 12:189–196

    Google Scholar 

  27. Laschewsky A, Zerbe I (1991) Polymer 32:2070–2080

    Google Scholar 

  28. Anton P, Heinze J, Laschewsky A (1993) Langmuir 9:77–85

    Google Scholar 

  29. Anton P, Laschewsky A (1993) Makromol Chem 194:601–624

    Google Scholar 

  30. Tundo P, Kippenberger DJ, Politi MJ, Klahn P, Fendler JH (1982) J Am Chem Soc 104:5352–5358

    Google Scholar 

  31. Anton P (1993) Ph.D. thesis, Mainz (Germany)

  32. Lunkenheimer K (1982) Tenside Deterg 19:272–281 and references therein

    Google Scholar 

  33. Laschewsky A, Zerbe I (1991) Polymer 32:2081–2086

    Google Scholar 

  34. Ringsdorf H, Schlarb B, Venzmer J (1988) Angew Chem Int Eng Ed 27:113–158

    Google Scholar 

  35. Finkelmann H, Rehage G (1984) Adv Polym Sci 60/61:163–171

    Google Scholar 

  36. Kalyanasundaram K, Thomas JK (1977) J Am Chem Soc 99:2039–2044

    Google Scholar 

  37. Dong DC, Winnik MA (1984) Can J Chem 62:2560–2566

    Google Scholar 

  38. Loew LM, Simpson L, Hassner A, Alexanion V (1979) J Am Chem Soc 101:5439–5440

    Google Scholar 

  39. Ephardt H, Fromherz P (1993) J Phys Chem 97:4540–4547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anton, P., Laschewsky, A. Solubilization by polysoaps. Colloid Polym Sci 272, 1118–1128 (1994). https://doi.org/10.1007/BF00652381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652381

Key words

Navigation