Skip to main content
Log in

The dynamical process of a coronal transient associated with an eruptive prominence

I. Basic mechanism

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The statistical correlation between an eruptive prominence and the coronal transient associated with this prominence implies that there should be a relationship between these two kinds of dynamical processes. This paper analyzes the dynamical effect of a plasma ‘piston’ in the corona, consisting of an eruptive prominence and/or a magnetic flux region (loop or arcade, or blob) in front of the prominence. Ahead of the piston, there is a compressed flow, which produces a shock front. This high-density region corresponds to the bright feature of the transient. Behind the piston, there is a rarefaction region, which corresponds to the dark feature of the transient. Therefore, both the bright and dark features of the transient may be explained at the same time by the dynamical process of the moving piston.

Two local solutions, one perpendicular and one parallel to the direction of solar gravitational field, are discussed. The influence of gravity on the gas-dynamical process driven by the piston is discussed in terms of characteristic theory, and the flow field is given quantitatively. For a typical piston trajectory similar to the one for an eruptive prominence, the velocity of the shock front which locates ahead the transient front is nearly constant or slightly accelerated, and the width of the compressed flow region may be kept nearly constant or increased linearly, depending on the velocity distribution of the piston. Based on these results, the major features of the transient may be explained. Some of the fine structure of the transient is also shown, which may be compared in detail with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1973,Astrophysical Quantities, Athlone Press, Univ. of London.

  • Anzer, U.: 1978,Solar Phys. 57, 111.

    Google Scholar 

  • Chipman, E. G.: 1981,Astrophys. J. 244, L113.

    Google Scholar 

  • Dryer, M.: 1981,Solar Wind Four, Rep. No. MPAE-W-100-81-31.

  • Dryer, M., Wu, S. T., Stienolfson, R. S., and Wilson, R. M.: 1979,Astrophys. J. 227, 1059.

    Google Scholar 

  • Fisher, R. and Poland, A. I.: 1981,Astrophys. J. 246, 1004.

    Google Scholar 

  • Howard, R. A.et al.: 1976, NOAA World Data Center A, UAG-48A.

  • Landau, L. D. and Lifshitz, E. M.: 1959,Fluid Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Low, B. C.: 1982,Astrophys. J. 254, 335.

    Google Scholar 

  • Low, B. C., Munro, R. H., and Fisher, R.: 1982,Astrophys. J. 246, 1004.

    Google Scholar 

  • MacQueen, R. M.: 1980,Phil. Trans. Roy. Soc. London A297, 605.

    Google Scholar 

  • MacQueen, R. M., Eddy, J. A., Gosling, J. T., Hildner, E., Munro, R. H., Newkirk, G. A., Poland, A. I., and Ross, C. L.: 1974,Astrophys. J. 187, L85.

    Google Scholar 

  • Maxwell, A. and Dryer, M.: 1981,Solar Phys. 73, 313.

    Google Scholar 

  • Mouschovias, T. C. and Poland, A. I.: 1978,Astrophys. J. 220, 675.

    Google Scholar 

  • Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., and Ross, C. L.: 1979,Solar Phys. 61, 201.

    Google Scholar 

  • Nakagawa, Y., Wu, S. T., and Tandberg-Hanssen, E.: 1975,Solar Phys. 41, 387.

    Google Scholar 

  • Nakagawa, Y., Wu, S. T., and Han, S. M.: 1978,Astrophys. J. 219, 314.

    Google Scholar 

  • Pneuman, G. W.: 1980,Solar Phys. 65, 369.

    Google Scholar 

  • Rust, D. M., Hildner, E., Dryer, M., Hanson, R. T., McClymont, A. N., McKenna-Lawler, S. M. P., McLean, D. J., Schmahl, E., Steinolfson, R. S., Tandberg-Hanssen, E., Tousey, R., Webb, D., and Wu, S. T.: 1979, in P. Sturrock (ed.),Solar Flares, p. 273.

  • Sedov, L. I.: 1959,Similarity and Dimensional Methods in Mechanics, Academic Press.

  • Stanyukovich, K. P.: 1960,Unsteady Motion of Continuous Media, Pergamon Press, Oxford.

    Google Scholar 

  • Steinolfson, R. S. and Nakagawa, Y.: 1977,Astrophys. J. 215, 345.

    Google Scholar 

  • Tandberg-Hanssen, E.: 1974,Solar Prominences, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Thompson, P. A.: 1972,Compressible-Fluid Dynamics, McGraw-Hill Book Co., New York, Chapter 8.

    Google Scholar 

  • Wu, S. T., Dryer, M., Nakagawa, Y., and Han, S. M.: 1978,Astrophys. J. 219, 324.

    Google Scholar 

  • Yeh, T. and Dryer, M.: 1981,Astrophys. J. 245, 704.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, WR. The dynamical process of a coronal transient associated with an eruptive prominence. Astrophys Space Sci 92, 373–394 (1983). https://doi.org/10.1007/BF00651302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651302

Keywords

Navigation