Skip to main content
Log in

Methanogenesis at low temperatures by microflora of tundra wetland soil

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 °C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10°C. The activity of different microbial groups of methanogenic community in the temperature range of 6–28 °C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 °C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aselmann I & Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8: 307–358

    Article  CAS  Google Scholar 

  • Bak F (1988) Sulfatreduzierende Bakterien und ihre Aktivität im Litoralsediment der Unteren Gull (Überlinger See). Hartung-Gorre Verlag Konstanz: 154–158

    Google Scholar 

  • Chuvilskaya NA, Obraztsova AYa, Belokopytov BF, Laurinavichus KS, Atakishiyeva YaYu & Akimenko VK (1989) An immunological assay of thermophilic anaerobic bacteria Mikrobiologiya 58: 489–493

    Google Scholar 

  • Conrad R, Bak F, Seitz HJ, Thebrath B, Mayer HP & Schütz H (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol 62: 285–294

    Article  CAS  Google Scholar 

  • Conrad R, Schutz H. & Babbel M. (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Ecol. 45: 281–289.

    Article  CAS  Google Scholar 

  • Drake HL (1992) Acetogenesis and acetogenic bacteria. In: Lederberg J (Ed.) Encyclopedia of Microbiology. Vol 1 (pp 1–15) Academic Press, San Diego, CA.

    Google Scholar 

  • Gujer W & Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci. Technol. 15: 627–667

    Google Scholar 

  • Harriss RC, Gorham E, Sebacher DI, Bartlett KB & Flebbe PA (1985) Methane flux from northern peatlands. Nature 315: 652–654

    Article  CAS  Google Scholar 

  • Jones JG & Simon BM (1985) Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49: 944–948.

    PubMed  CAS  Google Scholar 

  • Khalil MAK & Rasmussen RA (1983) Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res. 88: 5131–5144.

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Nozhevnikova AN, Kalyuzhnyi SV & Zavarzin GA (1993a) Methanogenic digestion of cattle manure at low temperature. Mikribiologiya 62: 761–771.

    CAS  Google Scholar 

  • Kotsyurbenko OR, Nozhevnikova AN & Zavarzin GA (1993b) Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. Chemosphere 27: 1745–1761

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP, Lysenko AM & Osipov GA (1995) New species of psychrophilic acetogens: Acetobacterium bakii sp.nov., A.paludosum sp.nov., A.fimetarium sp.nov. Arch. Microbiol. 163: 29–34.

    Article  CAS  Google Scholar 

  • Matthews E & Fung I. (1987) Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles 1: 61–86.

    Article  CAS  Google Scholar 

  • Nozhevnikova AN, Kotsyurbenko OR & Simankova MVO (1994) Acetogenesis at low temperature. In: Drake HL (Ed.) Acetogenesis and acetogenic bacteria. (pp 416–431) Chapmann & Hall, New York-London.

    Google Scholar 

  • Nozhevnikova AN & Kotsyurbenko OR (1995) Microbiological fundamentals of methanogenesis in a wide range of temperatures (5–75°C) In: Marhaim U & Ney G (Eds.) Biogas technology as an environmental solution to pollution (pp 1–25) Forth FAO/SREN Workshop, Migal, Israel June 1994. REUR Technological series 33, FAO of UN, Rome.

    Google Scholar 

  • Nozhevnikova AN & Lebedev VS (1995) Burrial sites of municipal garbage as a source of atmospheric methane. Int. Quatr. J. of ‘Ecological Chemistry’ 4, N1: 48–58.

    Google Scholar 

  • Nozhevnikova AN, Nekrasova VK, Lebedev VS & Lifshitz AB (1993) Microbiological processes in landfills. Wat. Sci. Technol. 27, No 2: 243–252

    CAS  Google Scholar 

  • Nozhevnikova AN & Yagodina TG (1982) Thermophilic acetate-utilizing methanogenic bacterium (TAMB) Mikrobiologiya 51: 642–649.

    CAS  Google Scholar 

  • Omelchenko MV, Savelieva ND, Vasilyeva LV (1992) Zavarzin GA. Psychrophilic methanotrophic community from tundra soil. Mikrobiologiya 61: 1072–1077

    Google Scholar 

  • Omelchenko MV, Vasilyeva LV & Zavarzin GA (1993) Psychrophilic methanotroph from tundra soil. Current Microbiol 27: 255–259

    Article  CAS  Google Scholar 

  • Parshina SN, Nozhevnikova AN & Kalyuzhnyi SV (1993) Degradation of protein substrates by microflora of pig's manure at low temperature. Mikrobiologiya 62: 169–180.

    CAS  Google Scholar 

  • Phelps J & Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol. 48: 1088–1095.

    PubMed  CAS  Google Scholar 

  • Pfennig N & Lippert KD. (1966) Über das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. Arch. Microbiol. 55: 245–256

    CAS  Google Scholar 

  • Rotmans J, Elzenden MGJ, Krol MS, Swart RJ & Woervan der HJ (1992) Stabilizing atmospheric concentrations: towards international methane control. Ambio 21, N6: 404–413

    Google Scholar 

  • Schink B (1991) Syntrophism among Prokaryotes. In: Balows A, Trüper H, Dworkin M, Harder W & Schleifer K-H (Eds). The Prokaryotes Vol. 1 (pp 276–299). Springer-Verlag.

  • Slobodkin AI, Panikov NS & Zavarzin GA. (1992) Microbiological methane production and consumption in the tundra and middle taiga bogs. Mikrobiologiya 61: 683–691

    CAS  Google Scholar 

  • Sutter K, Egger K & Wellinger A. (1987) Psychrophilic methane production: A low rate, but economically viable technique. In: Vesiroglu TN (Ed.) Alternative energy sources VII, Vol. 4, (pp. 87–98) Hemisphere, Washington

    Google Scholar 

  • Svensson BH. (1984) Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Env. Microbiol. 48: 389–394

    CAS  Google Scholar 

  • Svensson BH. & Rosswall T (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43: 341–350

    Article  CAS  Google Scholar 

  • Tans PP, Fung IY & Takahashi T. (1990) Observational constraints on the global atmospheric carbon dioxide budget. Science 247: 1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Wolin EA, Wolin MJ & Wolfe RS (1963) Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882–2886

    PubMed  CAS  Google Scholar 

  • Zavarzin GA (1986) Trophic relations in methanogenic community. Izvestiya AN USSR Ser. biol. N3: 341–360 (in Russian)

    Google Scholar 

  • Zavarzin GA, Kotsyurbenko OR, Soloviova TI & Nozhevnikova A.N. (1993) Temperature threshold during development of methanogenic or acetogenic microbial community from tundra soil. Dokl. Academii Nauk, 329: 792–794 (in Russian).

    Google Scholar 

  • Zavarzin G.A., Nozhevnikova A.N. 1993. Landfills and waste deposits producing greenhouse gases. Current Op. in Biotechnol. 4 (3): 356–362.

    Article  Google Scholar 

  • Zeemann G, Sutter K, Vens T, Koster M & Wellinger A. (1988) Psychrophilic digestion of dairy cattle and pig manure: start-up procedures of batch and CSTR-type digesters. Biological wastes, 26: 15–31.

    Article  Google Scholar 

  • Zhilina TN & Zavarzin GA (1991) Methane production at low temperature by the pure culture of Methanosarcina. Doklady AN USSR 317: 1242–1245 (in Russian).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsyurbenko, O.R., Nozhevnikova, A.N., Soloviova, T.I. et al. Methanogenesis at low temperatures by microflora of tundra wetland soil. Antonie van Leeuwenhoek 69, 75–86 (1996). https://doi.org/10.1007/BF00641614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00641614

Key words

Navigation