Skip to main content
Log in

Isolation of an insect circadian clock

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Under constant conditions the compound eyes of the ground beetleAnthia sexguttata exhibit sensitivity changes in a very clear circadian rhythm. Usually the rhythms in both eyes in constant darkness are mutually coupled. After transection of the optic tract between the lobula and the supraesophageal ganglion the circadian rhythms of the two eyes continue without interruption, but coupling between them is abolished. Even if the entire supraesophageal ganglion is removed, leaving the optic ganglia intact, the circadian rhythms in the eyes continue without interruption independently. But the rhythm is abolished if the region of the lobula is damaged.

The experiments show thatAnthia has circadian pacemakers in the left and right optic ganglia in or close to the lobula. These pacemakers can function independently from the rest of the brain and control circadian rhythms of physiological events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff J (ed) (1981) Handbook of behavioral neurobiology, vol 4, Biological rhythms. Plenum Press, New York

    Google Scholar 

  • Balkenohl M, Weber F (1982) Sind auch bei holometabolen Insekten circadiane Schrittmacher der Aktivität in den optischen Ganglien lokalisiert? Verh Dtsch Ges Allg Angew Entomol (in press)

  • Barlow RB jr, Chamberlain SC, Levinson JZ (1980)Limulus brain modulates the structure and function of the lateral eyes. Science 210:1037–1039

    Google Scholar 

  • Cymborowski B (1981) Transplantation of circadian pacemaker in the house cricket,Acheta domesticus L. J Interdiscipl Cycle Res 12:133–140

    Google Scholar 

  • Fleissner G, Fleissner G (1978) The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion. Comp Biochem Physiol [A] 61:69–71

    Google Scholar 

  • Fleissner G, Fleissner G (1982) Lokalisierung circadianer Uhren bei Skorpion und Käfer. Verh Dtsch Zool Ges (in press)

  • Fleissner G, Heinrichs S (1982) Neurosecretory cells in the circadian clock system of the scorpion,Androctonus australis. Cell Tissue Res 224:233–238

    Google Scholar 

  • Handler AM, Konopka RJ (1979) Transplantation of a circadian pacemaker inDrosophila. Nature 279:236–238

    Google Scholar 

  • Koehler WK, Fleissner G (1978) Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature 274:708–710

    Google Scholar 

  • Koehler WK, Fleissner G (1979) Bilateralsymmetrische Organisation circadianer Oszillatoren im Sehsystem von Schwarzkäfern. Verh Dtsch Zool Ges 1978:290

    Google Scholar 

  • Larimer JL, Smith JTF (1980) Circadian rhythm of retinal sensitivity in crayfish: Modulation by the cerebral and optic ganglia. J Comp Physiol 136:313–326

    Google Scholar 

  • Loher W (1972) Circadian control of stridulation in the cricketTeleogryllus commodus (Walker). J Comp Physiol 69:173–190

    Google Scholar 

  • Nishiitsutsuji-Uwo J, Pittendrigh CS (1968) Central nervous system control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Z Vergl Physiol 58:14–46

    Google Scholar 

  • Page TL (1978) Interactions between bilaterally paired components of the cockroach circadian system. J Comp Physiol 124:225–236

    Google Scholar 

  • Page TL (1981) Effects of localized low temperature pulses on the circadian rhythm of locomotor activity in the cockroach. Am J Physiol 240:R144-R150

    Google Scholar 

  • Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Google Scholar 

  • Page TL, Caldorola PC, Pittendrigh CS (1977) Mutual entrainment of bilaterally distributed circadian pacemakers. Proc Natl Acad Sci USA 74:1277–1281

    Google Scholar 

  • Roberts SK (1974) Circadian rhythms in cockroaches: effects of optic lobe lesions. J Comp Physiol 88:21–30

    Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    Google Scholar 

  • Sokolove PG (1975) Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Res 87:13–21

    Google Scholar 

  • Sokolove PG, Loher W (1975) Role of eyes, optic lobes and pars intercerebralis in locomotory and stridulatory circadian rhythms ofTeleogryllus commodus. J Insect Physiol 21:785–799

    Google Scholar 

  • Truman JW (1972) Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J Comp Physiol 81:99–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 45 „Vergleichende Neurobiologie des Verhaltens“ E1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleissner, G. Isolation of an insect circadian clock. J. Comp. Physiol. 149, 311–316 (1982). https://doi.org/10.1007/BF00619146

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619146

Keywords