Skip to main content
Log in

Implication of fractal geometry for fluid flow properties of sedimentary rocks

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

It is demonstrated that a certain amount of order can be extracted from an apparently random distribution of pores in sedimentary rocks by exploiting the scaling characteristics of the geometry of the porespace with the help of fractal statistics. A simple fractal model of a sedimentary rock is built, and is tested against both the Archie law for conductivity and the Carman-Kozeny equation for permeability. We demonstrate how multifractal scaling of pore-volume can be used as a tool for rock characterization by computing its experimentalf(α) spectrum, which can be modelled by a simple two-scale Cantor set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B., 1982,The Fractal Geometry of Nature, Freeman.

  2. McCauley, J. L., 1990,Z. Phys. B.81, 115.

    Google Scholar 

  3. Kozeny, J., 1927, Sitzungsber, Akad. Wiss. Wien136, p. 271. Carman, P. C. 1948, Disc. Faraday Soc. 3, p. 72.

    Google Scholar 

  4. Archie, G. E., 1942,Trans. AIME.

  5. Hansen, J. P. and Skjeltorp, A. T., 1988,Phys. Rev. B 38, 2635.

    Google Scholar 

  6. Wong, P. Z., 1987, in Banavar, J., Koplik, J., and Winkler, K. (eds.)Physics and chemistry of porous media II, AIP Conference Proc.154, 304–318, American Institute of Physics, New York.

    Google Scholar 

  7. Adler, P. M., 1986,Phys. Fluids 29, 15.

    Google Scholar 

  8. Jacquin, C. G. and Alder, P. M., 1987,Transport in Porous Media 2, 571.

    Google Scholar 

  9. Lemaiter, R. and Alder, P. M., 1990,Transport in Porous Media 5, 325.

    Google Scholar 

  10. Wong, P. Z., Koplik, J., and Tomanic, J. P., 1984,Phys. Rev. B 30, 6606.

    Google Scholar 

  11. Katz, A. J. and Thompson, A. H., 1986,Phys. Rev. B 34, 8179.

    Google Scholar 

  12. McCauley, J. L., 1990,Physics Reports 189, 225.

    Google Scholar 

  13. McCauley, J. L., 1989,Int. J. Modern Phys. B, 821.

  14. Koplik, J. and Lassiter, T. J., 1985,SPE, February.

  15. Hansen, J. P. and Muller, J., in preparation.

  16. Schertzer, D. and Lovejoy, S., 1990, Non-linear variability in geophysics: analysis and simulation, in Pietronero, L., (ed.)Fractals, 49–79, Plenum Press.

  17. Sreenivassan, K. R., Prasad, R. R., Meneveau, C., and Ramshankar, R., 1989, The fractal geometry of interfaces and multifractal distribution of dissipation in fully turbulent flows, in Scholz, C. H. and Mandelbrot, B. B., (eds.)Fractals in Geophysics, BirkhÄuser.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, J., McCauley, J.L. Implication of fractal geometry for fluid flow properties of sedimentary rocks. Transp Porous Med 8, 133–147 (1992). https://doi.org/10.1007/BF00617114

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617114

Key words

Navigation