Skip to main content
Log in

Computation of olfactory signals inDrosophila melanogaster

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Olfactory discrimination ofDrosophila melanogaster WT Berlin was determined in a learning paradigm.

  1. 1.

    Single compound discrimination: Differential sensitivity as a function of the absolute odor concentration was high over three orders of magnitude for 4-methylcyclohexanol (M). For 3-octanol (O) the dependence had two maxima. This may be due to different receptor types, which are sensitive to the same chemical, but at different concentrations. For M the concentration sensitivity ranges may overlap, for O they may be separated. — Masking experiments indicate reciprocal inhibition between perception of the two odors. This inhibition probably does not take place at the receptor site.

  2. 2.

    Multicompound discrimination: Concentration differences were compared with differences in composition. In a certain range of the reference odor, differences in composition were more easily detected than differences in concentration. — In contrast to former propositions (Kramer 1976) discrimination between different concentrations of a multicomponent odor was not the sum of discrimination values for the respective single components, but in all cases tested was equal or even lower than the highest single component value.

  3. 3.

    A model is proposed with the following features: The discrimination between the two odors is directly proportional to the sum of the excitation differences in each receptor channel (corresponding to the output of a receptor) after the mean excitation level of all channels has been subtracted from each single one. Under certain circumstances this provides a concentration invariant receptor pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzer S (1967) Behavioral mutants ofDrosophila isolated by countercurrent distribution. Proc Natl Acad Sci USA 58:1112–1119

    Google Scholar 

  • Boeckh J, Ernst KD, Sass H, Waldow U (1976) Zur nervösen Organisation antennaler Sinneseingänge bei Insekten unter besonderer Berücksichtigung der Riechbahn. Verh Dtsch Zool Ges 1976:123–139

    Google Scholar 

  • Boeckh J, Boeckh V, Kuehn A (1977) Further data on the topography and physiology of central olfactory neurons in insects. In: Le Magnon J, Mac Leod P (eds) Olfaction and taste 6. Information Retrieval Ltd, London Washington DC, pp 315–321

    Google Scholar 

  • Boeckh J, Boeckh V (1979) Threshold and odor specifity of pheromone-sensitive neurons in the deutocerebrum ofAntheraea pernyi andA. polyphemus (Saturniidae). J Comp Physiol 132:235–242

    Google Scholar 

  • Borst A, Heisenberg M (1982) Osmotropotaxis inDrosophila melanogaster. J Comp Physiol 147:479–484

    Google Scholar 

  • Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145:447–457

    Google Scholar 

  • Dudai Y (1977) Properties of learning and memory inDrosophila melanogaster. J Comp Physiol 114:69–89

    Google Scholar 

  • Ekman G (1963) A direct method for multidimensional ratio scaling. Psychometrica 28:33–41

    Google Scholar 

  • Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the organization of the central antennal pathways in insects. 2. Deutocerebral connections inLocusta migratoria andPeriplaneta americana. Cell Tissue Res 176:285–308

    Google Scholar 

  • Fukushi T (1973) Olfactory conditioning in the housefly,Muscadomestica. Annot Zool Jpn 46:135–143

    Google Scholar 

  • Henning H (1915) Der Geruch. Z Psychol 73:161–257. (Cited after: Amoore JE (1971) Olfactory genetics and anosmia. In: Beidler LM (ed) Handbook of sensory physiology, vol 4. Springer, Berlin Heidelberg New York, pp 245–256)

    Google Scholar 

  • Kramer E (1976) The orientation of walking honeybees in odor fields with small concentration gradients. Physiol Entomol 1:27–37

    Google Scholar 

  • Masson C (1977) Central olfactory pathways and plasticity of responses to odorous stimuli in insects. In: Le Magnon J, Mac Leod P (eds) Olfaction and taste 6. Information Retrieval Ltd, London Washington DC, pp 305–314

    Google Scholar 

  • Neuhaus W (1955) Die Unterscheidung von Duftquantitäten bei Mensch und Hund nach Versuchen mit Buttersäure. Z Vergl Physiol 37:234–252

    Google Scholar 

  • Pitts W, McCulloch WS (1947) How we know universal: The perception of auditory and visual forms. Bull Math Biophys 9:127–147

    Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior inDrosophila melanogaster. Proc Natl Acad Sci USA 71:708–712

    Google Scholar 

  • Ronnacher B (1979) Beitrag einzelner Parameter zum wahrnehmungsgemäßben Unterschied von zusammengesetzten Reizen bei der Honigbiene. Biol Cybern 32:77–83

    Google Scholar 

  • Ronnacher B (1980) Ein einfacher Zusammenhang zwischen der Äquivalenzbeziehung und der Unterschiedsempfindlichkeit für zwei Musterparameter bei der Honigbiene. Biol Cybern 36:51–61

    Google Scholar 

  • Sass H (1976) Zur nervösen Codierung von Geruchsreizen beiPeriplaneta americana. J Comp Physiol 107:49–65

    Google Scholar 

  • Schneider D, Lacher V, Kaissling KE (1964) Die Reaktionswei Se und das Reaktionsspektrum von Riechzellen beiAntheraea pernyi (Lepidoptera, Saturniidae). Z Vergl Physiol 48:632–662

    Google Scholar 

  • Selzer R (1979) Morphological and physiological identification of food odor specific neurons in the deutocerebrum ofPeriplaneta americana. J Comp Physiol 134:159–163

    Google Scholar 

  • Selzer R (1981) The processing of a complex food odor by antennal olfactory receptors ofPeriplaneta americana. J Comp Physiol 144:509–519

    Google Scholar 

  • Stone H, Bosley JJ (1965) Olfactory discrimination and Weber's law. Percept Mot Skills 20:657–665

    Google Scholar 

  • Tempel B, Bonini N, Dawson D, Quinn WG (1982) Reward learning in normal and mutantDrosophila (submitted to PNAS)

  • Vareschi E (1971) Duftunterscheidung bei der Honigbiene, Einzelableitung und Verhaltensreaktionen. Z Vergl Physiol 75:143–173

    Google Scholar 

  • Varjú D (1962) Vergleich zweier Modelle für laterale Inhibition. Kybernetik 1:200–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borst, A. Computation of olfactory signals inDrosophila melanogaster . J. Comp. Physiol. 152, 373–383 (1983). https://doi.org/10.1007/BF00606242

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606242

Keywords

Navigation