Skip to main content
Log in

Retrotransposon families in rice

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Three families of retrotransposons of rice (Tos1,Tos2, andTos3) were isolated by using a method based on the sequence conservation of the primer binding site for reverse transcription. This method should be generally applicable for cloning retrotransposons of other plants. One retrotransposon,Tos3-1, was studied in detail.Tos3-1 is 5.2 kb long, has structures common to retrotransposons, such as long terminal repeats (LTR), a primer binding site complementary to the initiator tRNA, a polypurine tract, and generates target sequence duplications flanking the inserted element. Southern blotting analysis showed that sequences homologous toTosl, 2 and3 are found in wild rice species as well as in cultivated rice species, but not in maize and tobacco. The copy number and genomic location of the families vary in different strains of one species of wild rice, suggesting that these elements may still be active. Retrotransposons were also screened for by amplification of the reverse transcriptase coding region using the polymerase chain reaction (PCR). At least two types of copia-like elements (Tos4] andTos5) were found. The total copy number of retrotransposons in the rice genome was estimated to be about 1000. These results suggest that, as inDrosophila, retrotransposons are the major transposon class in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aeby P, Spicher A, de Chastonay Y, Muller E, Tobler H (1986) Structure and genomic organization of proretrovirus-like elements partially eliminated from the somatic genome ofAscaris lumbricoides. EMBO J 5:3353–3360

    Google Scholar 

  • Bingham P, Zachar Z (1989) Retrotransposons and the FB transposon fromDrosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp. 485–502

    Google Scholar 

  • Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500

    Google Scholar 

  • Boeke J, Garfinkel DJ (1987) Yeast Ty elements as retroviruses. In: Leibowitz MJ, Koltin Y (eds) Viruses of fungi and simple eukaryotes. Marcel Dekker Inc, New Vork, pp. 15–39

    Google Scholar 

  • Camirand A, St-Pierre B, Marineau C, Brisson N (1990) Occurrence of a copia-like transposable element in one of the introns of the potato starch phosphorylase gene. Mol Gen Genet 224:33–39

    Google Scholar 

  • Chang TT (1984) Conservation of rice genetic resources: Luxury or necessity? Science 224:251–256

    Google Scholar 

  • Clare J, Farabaugh P (1985) Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc Natl Acad Sci USA 82:2829–2833

    Google Scholar 

  • Coen ES, Robbins TP, Almedia J, Hudson A, Carpenter R (1989) Consequences and mechanisms of transposition inAntirrhinum majus. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp. 413–436

    Google Scholar 

  • Doolittle RE, Feng D-F, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Quart Rev Biol 64:1–30

    Google Scholar 

  • Echalier G (1989)Drosophila retrotransposons: interactions with genome. Advances in virus research 36:33–103

    Google Scholar 

  • Eichinger DJ, Boeke J (1988) The DNA intermediate in yeast Ty element transposition copurifies with virus-like particles: cell-free Tyl transposition. Cell 55:955–966

    Google Scholar 

  • Fedoroff NV (1989) Maize transposable elements. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 375–411

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Finnegan DJ (1985) Transposable elements in eukaryotes. Int Rev Cyt 93:281–326

    Google Scholar 

  • Grandbastien MA, Spielman A, Caboche M (1989) Tntl, a mobile retrovirul-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    Google Scholar 

  • Green MM (1988) Mobile DNA elements and spontaneous gene mutation. In:Lambert ME, McDonald JF, Weinstein IB (eds) Eukaryotic transposable elements as mutagenic agents. Cold Spring Harbor Laboratory Press, New York, pp. 41–50

    Google Scholar 

  • Harberd NP, Flavell RB, Thompson RD (1987) Identification of a transposon-like insertion in aGlu-1 allele of wheat. Mol Gen Genet 209:326–332

    Google Scholar 

  • Iyengar GAS, Sen SK (1979) Characteristics of nuclear DNA in the genusOryza. Theor Appl Genet 54:219–224

    Google Scholar 

  • Jin YK, Bennetzen JL (1989) Structure and coding properties ofBs1, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86:6235–6239

    Google Scholar 

  • Johns MA, Babcock MS, Fuerstenberg SM, Fuerstenberg SI, Freeling M, Simpson RB (1989) An unusually compact retrotransposon in maize. Plant Mol Biol 12:633–642

    Google Scholar 

  • Konieczny A, Voytas DF, Cummings MP, Ansubel FM (1991) A superfamily ofArabidopsis italiana retrotransposons. Genetics 127:801–809

    Google Scholar 

  • Kröger B, Horak I (1987) Isolation of novel human retrovirusrelated sequences by hybridization to synthetic oligonucleotides complementary to the tRNAPro primer-binding site. J Virol 61:2071–2075

    Google Scholar 

  • Kuff EL, Feenstra A, Lenders K, Smith L, Hawley R, Hozumi N, Shulman M (1983) Intercisternal A-particle genes as movable elements in the mouse genome. Proc Natl Acad Sci UAS 80:1992–1996

    Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Google Scholar 

  • Mellor J, Kingsman AJ, Kingsman SM (1986) Ty, an endogenous retrovirus of yeast? Yeast 2:145–152

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Method Enzymol 101:20–89

    Google Scholar 

  • Morishima H (1984) Wild plants and domestication. In: Tsunoda S, Takahashi N (eds) Biology of rice. Japan Science Press, Tokyo, pp. 3–30

    Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of theDrosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5:1630–1638

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Google Scholar 

  • Paulson KE, Deka N, Schmid CW, Misra R, Schindler CW, Rush MG, Kadyk L, Leinwand L (1985) A transposon-like element in human DNA. Nature 316:359–361

    Google Scholar 

  • Rubin GM (1983) Dispersed repetitive DNAs inDrosophila. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, New York, pp. 329–361

    Google Scholar 

  • Saigo K, Kugimiya W, Matsuo V, Inouye S, Yoshinaka K, Yuki S (1984) Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element inDrosophila melanogaster. Nature 312:659–661

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular claning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Shepherd NS, Schwarz-Sommer Z, vel Spalve JB, Gupta M, Wienand U, Saedler H (1984) Similarity of theCinl repetive family ofZea mays to eukaryotic transposable elements. Nature 307:185–187

    Google Scholar 

  • Shepherd RJ (1989) Biochemistry of DNA plant viruses. In: Marcus A (ed) The biochemistry of plants. Academic Press, San Diego pp. 563–616

    Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989). Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 337:274–276

    Google Scholar 

  • Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon fromLilium henryi is related toTy3 of yeast and the gypsy group ofDrosophila. Proc Natl Acad Sci USA 86:5015–5019

    Google Scholar 

  • Sprinzl M, Hartman T, Meissner F, Moll J, Vorderwulbecke T (1987) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 15:Suppl r53-r188

    Google Scholar 

  • Takahashi N (1984) Differentiation of ecotypes inOryza sativa L. In: Tsunoda S, Takahashi N (eds) Biology of rice. Japan Science Press, Tokyo, pp. 31–67

    Google Scholar 

  • Toh H, Kikuno R, Hayashida H, Miyata T, Kugimiya W, Inouye S, Vuki S, Saigo K (1985) Close structural resemblance between putative polymerase of aDrosophila transposable genetic element 17.6 andpol gene product of Moloney murine leukemia virus. EMBO J 4:1267–1272

    Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp. 53–108

    Google Scholar 

  • Végh Z, Vineze E, Kadirov R, Tóth G, Kiss GB (1990) The nucleotide sequence of a nodule-specific gene, Nms-25 ofMedicago sativa: its primary evolution via exon-shuffling and retrotransposon-mediated DNA rearrangements. Plant Mol Biol 15:295–306

    Google Scholar 

  • Voytas DF, Ausubel FM (1988) A copia-like transposable element family inArabidopsis thaliana. Nature 336:242–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.J. Finnegan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirochika, H., Fukuchi, A. & Kikuchi, F. Retrotransposon families in rice. Molec. Gen. Genet. 233, 209–216 (1992). https://doi.org/10.1007/BF00587581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587581

Key words

Navigation