Skip to main content
Log in

Kinetics and mechanism in the decomposition of NH3 in a radio-frequency pulse discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Studies of time-resolved absorption spectra of transient species in the decomposition of NH3 by an r.f. pulse discharge together with product analysis showed that the major radical formed was NH at concentrations of the order of 10−6 mol dm−3 (105 molec. cm−3). Possible mechanisms for the formation of the radical during the discharge and its decay following pulse cut-off were tested by computer simulation of the kinetic data. Following zero-order formation with rate coefficient 0.19±0.03 mol dm−3 s−1, the decay was second order in NH with rate coefficient 2.1±0.5×109 mol−1 dm3 s−1 both for pure NH3 and where NH3/rare gas mixtures were investigated. The kinetic data are consistent with NH removal in a nonassociative radical-radical reaction proceeding via a short-lived collision complex, probably 2NH → N2H2 → N2 + H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Thornton, B. Brown, and C. Howarth,Symp. Electrochem. Eng. 2, 21 (1973).

    Google Scholar 

  2. D. C. Carbaugh, F. J. Munno, and J. M. Marchello,J. Chem. Phys. 47, 5211 (1967).

    Google Scholar 

  3. R. d'Agostino, G. Ferraro, V. Colaprico, F. Cramarossa, and E. Molinari,3rd Int. Symp. on Plasma Chem., IUPAC, Vol. II G.5.13. Limoges (1977).

  4. R. d'Agostino, F. Cramarossa, S. De Benedictis, and G. Ferraro,Plasma Chem. Plasma Process. 1, 19 (1981).

    Google Scholar 

  5. E. J. Bair and M. H. Hanes,J. Chem. Phys. 38, 672 (1963).

    Google Scholar 

  6. F. Stuhl and K. H. Welge,Z. Naturforsch. Teil A 18, 900 (1963).

    Google Scholar 

  7. K. D. Baynes, K. H. Becker, and K. H. Welge,Z. Naturforsch. Teil A,17, 676 (1962).

    Google Scholar 

  8. G. M. Meaburn and S. Gordon,J. Phys. Chem. 72, 1592 (1968).

    Google Scholar 

  9. K. A. Martin and E. J. Bair,J. Chem. Phys. 49, 3248 (1968).

    Google Scholar 

  10. W. Andersen, B. Zwolinski, and R. Parlin,Ind. Eng. Chem. 51, 527 (1959).

    Google Scholar 

  11. O. Schnepp and K. Dressler,J. Chem. Phys. 32, 1682 (1960).

    Google Scholar 

  12. S. Gordon, W. Mulac, and P. Nangia,J. Phys. Chem. 75, 2087 (1971).

    Google Scholar 

  13. R. W. Diesen,J. Chem. Phys. 39, 2121 (1963).

    Google Scholar 

  14. J. E. Nicholas, C. A. Amodio, and M. J. Baker,J. Chem. Soc. Faraday Trans. I 75, 1868 (1979).

    Google Scholar 

  15. J. E. Nicholas and C. A. Amodio,J. Chem. Soc. Faraday Trans. I 76, 1669 (1980).

    Google Scholar 

  16. J. E. Nicholas and C. A. Amodio,Plasma Chem. Plasma Process. 2, 331 (1982).

    Google Scholar 

  17. J. E. Nicholas and A. I. Spiers,Plasma Chem. Plasma Process. 5, in press.

  18. J. E. Nicholas and P. W. Smith,J. Phys. D 9, 447 (1976).

    Google Scholar 

  19. C. Willis and R. A. Back,Can. J. Chem. 51, 3605 (1973).

    Google Scholar 

  20. JANAF Thermochemical Tables, 2nd edn.,Natl. Bur. Stand. Ref. Data Ser. 37 (1971).

  21. H. Okabe, Photochemistry of Small Molecules, Wiley-Interscience, New York (1978).

    Google Scholar 

  22. M. J. Howard and I. W. M. Smith,Prog. React. Kinet. 12, 55 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholas, J.E., Spiers, A.I. & Martin, N.A. Kinetics and mechanism in the decomposition of NH3 in a radio-frequency pulse discharge. Plasma Chem Plasma Process 6, 39–51 (1986). https://doi.org/10.1007/BF00573820

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00573820

Key words

Navigation