Skip to main content
Log in

Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents results of experiments in which the thermal expansion and swelling behaviour of an epoxy resin system and two graphite/epoxy composite systems exposed to water were measured. It was found that the cured epoxy resin swells by an amount slightly less than the volume of the absorbed water and that the swelling efficiency of the water varies with the moisture content of the polymer. Additionally, the thermal expansion of cured epoxy resin that is saturated with water is observed to be more than twice that of dry resin. Results also indicate that cured resin that is saturated with 7.1% water at 95° C will rapidly increase in moisture content to 8.5% when placed in 1° C water. The mechanism for this phenomenon, termed reverse thermal effect, is described in terms of a slightly modified free-volume theory in conjunction with the theory of polar molecule interaction. Nearly identical behaviour was observed in two graphite/epoxy composite systems, thus establishing that this behaviour may be common to all cured epoxy resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Judd, Proceedings of the 30th Anniversary Technical Conference, Reinforced Plastics/Composites Institute (Soc. Plast. Ind., Inc., New York, 1975) Section 18-A.

    Google Scholar 

  2. J. H. Powell and D. V. Zigrang, “Proceedings of Conference on Environmental Effects” (Rockwell International Corporation, Tulsa, Oklahoma, 1976) p. 224.

    Google Scholar 

  3. J. C. Bowman, “Handbook of Fiberglass and Advanced Plastics Composites”, edited by George Lubin (SPE Polymer Technology Series, 1969) Ch. 11.

  4. R. M. Verrette and J. D. Labor, “Structural Criteria for Avanced Composites, Vol. I”, Technical Report AFFDL-TR-76-142, Northrup Corporation, Hawthorne, California (1977).

    Google Scholar 

  5. C-H. Shen and G. S. Springer, J. Comp. Mater. 10 (1976) 1.

    Google Scholar 

  6. E. L. McKague, Jr., J. D. Reynolds and J. E. Halkias, J. Appl. Polymer Sci. 22 (1978) 1643.

    Google Scholar 

  7. E. L. McKague, Jr., J. E. Halkias and J. D. Reynolds, J. Comp. Mater. 9 (1975) 2.

    Google Scholar 

  8. F. Bueche, “Physical Properties of Polymers” (Wiley, New York, London, 1962).

    Google Scholar 

  9. J. D. Ferry, “Viscoelastic Properties of Polymers” (Wiley, New York, London, 1961).

    Google Scholar 

  10. G. Rehage and W. Borchard, “The Physics of Glassy Polymers”, edited by R. N. Haward (Wiley, New York, 1973) Ch. 1, pp. 54–107.

    Google Scholar 

  11. R. D. Deanin, “Polymer Structure, Properties and Application” (Cahners, Boston, Mass., 1972).

    Google Scholar 

  12. T. K. Kwei, J. Appl. Polymer Sci. 10 (1966) 1647.

    Google Scholar 

  13. P. J. Flory, “Principles of Polymer Chemistry” (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  14. F. W. Billmeyer, Jr., “Textbook of Polymer Science”, 2nd Edn. (Wiley, New York, 1971).

    Google Scholar 

  15. L. E. Nielsen, “Reviews in Macromolecular Chemistry”, Vol. 4, edited by G. B. Butler and K. F. O'Driscoll (Marcel Dekker, New York, 1970).

    Google Scholar 

  16. Y. J. Chang, C. T. Chen and A. V. Tobolsky, J. Polymer Sci. Polymer Phys. Ed. 12 (1974) 1.

    Google Scholar 

  17. D. R. Paul, J. Polymer Sci. A-2 7 (1969) 1811.

    Google Scholar 

  18. H. Yasuda, C. E. Lamaze and A. Peterlin, ibid. 9 (1971) 1117.

    Google Scholar 

  19. W. R. Vieth and K. J. Sladek, J. Colloid Sci. 20 (1965) 1014.

    Google Scholar 

  20. H. W. Bergmann and C. W. Dill, “Proceedings of Conference on Environmental Effects” (Rockwell International Corporation, Tulsa, Oklahoma, 1976) p. 244.

    Google Scholar 

  21. A. Kelly, Sci. Amer. 217 (3) (1967) 160.

    Google Scholar 

  22. R. C. Wyatt and K. H. G. Ashbee, Fibre Science Technology 2 (1969) 29.

    Google Scholar 

  23. J. Hertz, National SAMPE Tech. Conference Vol. 4 (SAMPE, Azusa, 1972) pp. 1–7.

    Google Scholar 

  24. R. J. Morgan and J. E. O'Neal, Polymer Plast. Technol. Eng. 5 (2) (1975) 173.

    Google Scholar 

  25. A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci. Chem. A3 (1969) 275.

    Google Scholar 

  26. R. E. Cuthrell, J. Appl. Polymer Sci. 11 (1967) 949.

    Google Scholar 

  27. E. H. Erath and M. Robinson, J. Polymer Sci. C 3 (1963) 65.

    Google Scholar 

  28. D. H. Solomon, B. C. Loft and J. D. Swift, J. Appl. Polymer Sci. 11 (1967) 1593.

    Google Scholar 

  29. H. P. Wohnsiedler, J. Polymer Sci. C 3 (1963) 77.

    Google Scholar 

  30. H. T. Sumsion and D. P. Williams, “Fatigue of Composite Materials”, Special Technical Publication 569, Amer. Soc. for Testing and Materials (1975) pp. 226–247.

  31. J. Crank and G. S. Park, “Diffusion in Polymers” (Academic Press, London, 1968).

    Google Scholar 

  32. E. L. McKague, Jr., J. D. Reynolds and J. E. Halkias, Trans. ASME, J. Eng. Mater. Tech. 98 (1976) 92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamson, M.J. Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J Mater Sci 15, 1736–1745 (1980). https://doi.org/10.1007/BF00550593

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550593

Keywords

Navigation