Skip to main content
Log in

Application of inert radioactive gases in the study of solids

Part 1 Classical emanation method and surface labelling method. Apparatus and comparison of methods in the study of ferric oxide and thorium oxalate

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two methods based on the release of inert radioactive gases were used to study processes taking place on heating of solids: the classical emanation method and the surface labelling method. The results obtained with the use of these methods are compared for the study of (a) substances which do not change chemically when being heated in the temperature range studied (e.g. α-Fe2O3), (b) substances in which dehydration and thermal decomposition takes place (e.g. Th(C2O4).6H2O).

For substances which exhibit chemical and structural changes when being heated, results of investigation by means of the two above mentioned radiochemical methods are compared with DTA and dilatometric data, obtained under identical experimental conditions. Apparatus permitting simultaneous measurement of the release of two radioactive gases, DTA and dilatometric measurement is described.

From the substances which do not change when being heated, values of the activation energy of diffusion of inert gases incorporated by different ways are discussed. The advantages of the emanation and surface labelling methods over other physico-chemical methods are given and the possibilities of their application for the study of processes taking place in solids on heating, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Hahn, “Applied Radiochemistry” (Cornell University Press, New York, 1936) P. 191.

    Google Scholar 

  2. K. E. Zimens, Z. physik. Chem. A191 (1942) 1; A191 (1942) 95; A192 (1943) 10.

    Google Scholar 

  3. I. E. Starik, “Osnovy radiokhimii” (Izd Akad Nauk, USSR, Moscow, 1960).

    Google Scholar 

  4. O. Hahn, J. Chem. Soc. S56 Suppl. 1949 259.

    Google Scholar 

  5. A. C. Wahl and N. A. Bonner, “Radioactivity Applied to Chemistry” (Wiley, New York, and Chapman & Hall, London, 1951).

    Google Scholar 

  6. G. M. Zhabrova and M. D. Shibanova, Uspekhi Khimiji 36 (1967) 1407.

    Google Scholar 

  7. V. Balek, Chem. Listy 58 (1964) 1261.

    Google Scholar 

  8. S. Yajima, S. Ichiba, Y. Kamemoto, and K. Shiba, Bull. Chem. Soc. Jap. 33 (1960) 426; 34 (1961) 133.

    Google Scholar 

  9. S. Kalbitzer, Z. Naturforsch. 17a (1962) 1071.

    Google Scholar 

  10. F. W. Felix and H. Seelig, Nukleonik 8 (1967) 389.

    Google Scholar 

  11. R. Kelly, Can. J. Chem. 39 (1961) 2411.

    Google Scholar 

  12. R. Lindner and Hj. Matzke, Z. Naturforsch. 15a (1960) 1082.

    Google Scholar 

  13. D. Chleck, R. Maehl, O. Cucchiara, and E. Carnevale, Int. J. Appl. Rad. and Isotopes 14 (1963) 581.

    Google Scholar 

  14. G. Carter, Vacuum 9 (1959) 190.

    Google Scholar 

  15. R. Kelly and F. Brown, Acta Met. 13 (1965) 169.

    Google Scholar 

  16. Č. Jech, Int. J. Appl. Rad. and Isotopes 8 (1960) 179.

    Google Scholar 

  17. M. D. Freshley, F. E. Panisko, and R. E. Skavdahl, Trans. Am. Nucl. Soc. 9 (1966) 397.

    Google Scholar 

  18. M. E. Levina, B. S. Shershev, and K. B. Zaborenko, Radiokhimija 4 (1963) 480.

    Google Scholar 

  19. A. I. Czekhovskhikh, D. Nitzold, K. B. Zaborenko, and S. I. Volfkovich, Zh. neorg. Khim. 11 (1966) 1948.

    Google Scholar 

  20. K. B. Zaborenko, D. Nitzold, and V. I. Korobkov, Radiokhimija 5 (1963) 642.

    Google Scholar 

  21. K. B. Zaborenko and I. N. Bekman, ibid 10 (1968) 268.

    Google Scholar 

  22. K. B. Zaborenko, L. L. Melichov, and V. A. Portyanoj, ibid 7 (1965) 319.

    Google Scholar 

  23. K. E. Zimens, Z. physik. Chem. A186 (1940) 94.

    Google Scholar 

  24. S. Flügge and K. E. Zimens, ibid B42 (1939) 179.

    Google Scholar 

  25. G. Tammann and A. Sworykin, Z. anorg. allgem. Chem. 176 (1928) 46.

    Google Scholar 

  26. L. G. Cook, Z. physik. Chem. B42 (1939) 221.

    Google Scholar 

  27. V. Balek, J. Materials Sci, submitted for publication.

  28. P. A. Redhead, Vacuum 12 (1962) 203.

    Google Scholar 

  29. R. Kelly and H. J. Matzke, J. Nucl. Matls. 20 (1966) 171.

    Google Scholar 

  30. G. Carter, Vacuum 12 (1962) 245.

    Google Scholar 

  31. Č. Jech and R. Kelly, J. Phys. and Chem. Sol. in press.

  32. Idem,, Proc. Brit. Ceram. Soc. 9 (1967) 259.

    Google Scholar 

  33. Hj. Matzke, Can. J. Phys. 46 (1968) 621.

    Google Scholar 

  34. R. Lindner, Arkiv. Kemi 4 (1952) 381.

    Google Scholar 

  35. W. G. Hagel, Trans. Met. Soc. AIME 236 (1966) 179.

    Google Scholar 

  36. Hj. Matzke, J. Materials Sci. 2 (1967) 444.

    Google Scholar 

  37. S. Ichiba, J. Jap. Soc. Powder Metall. 9 (1962) 169.

    Google Scholar 

  38. P. Bussiére, B. Claudel, J. P. Renouf, Y. Trambouze, and M. Prettre, J. Chim. Phys. 58 (1961) 668.

    Google Scholar 

  39. D. K. Srivastava and A. P. Vasudeva Murphy, J. Sci. and Ind. Res. 21B (1962) 525.

    Google Scholar 

  40. Č. Jech, G. M. Zhabrova, S. Z. Roginksij, and M. D. Shibanova, Dokl. Akad. Nauk USSR 164 (1965) 1343.

    Google Scholar 

  41. A. V. Skharin, G. M. Zhabrova, N. P. Topor, and M. Ya. Kushnarev, Izv. Toms. Politech. Instituta, in press.

  42. R. Beckett and M. E. Winifield, Austral. J. Sci. Res. A4 (1951) 664.

    Google Scholar 

  43. R. W. M. Déye and P. G. Seelmann, J. Inorg. and Nucl. Chem. 1 (1955) 143.

    Google Scholar 

  44. K. B. Zaborenko and R. Thätner, Zhur. neorg. Khim. 11 (1966) 2198.

    Google Scholar 

  45. V. Balek, J. Radioanal. Chem. 2 (1969) 315.

    Google Scholar 

  46. K. B. Zaborenko and V. Balek, Zhur. neorg. Khim. 14 (1969) 1469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The experimental part of this study was carried out during the author's stay at the Radiochemistry Dept, Moscow State University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balek, V. Application of inert radioactive gases in the study of solids. J Mater Sci 4, 919–927 (1969). https://doi.org/10.1007/BF00549784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549784

Keywords

Navigation