Skip to main content
Log in

Micromechanics and kinetics of deformation zones at crack tips in polycarbonate

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plane stress deformation zones are grown from cracks produced by electron beam irradiation in thin films of polycarbonate (PC) bonded to ductile copper grids. The kinetics of zone growth in both length and width are followed by optical microscopy while v f, the ratio of zone thickness to film thickness, is followed by optical interference and transmission microscopy measurements. These data allow the zone surface displacement and stress profiles to be computed at various times during growth. There is a stress concentration at the zone tip which relaxes to a uniform stress over the rest of the zone up to near the crack tip. Both the tip stress concentration and uniform zone stress decrease as zone growth proceeds. The zone surface displacement rate follows these changes in stress. It is highest just behind the zone tip where the stress concentration exists and is constant in the uniform stress zone. It decreases markedly with time. While the Dugdale model does not predict the details of the zone micromechanics, in particular the zone tip stress concentration, it does predict qualitatively the correct trends. The crack propagates into the oriented polymer in the deformation zone in the form of a characteristic half diamond shape, which is the analogue of diamond cavities previously observed in the fracture process of oriented bulk polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 2967.

    Google Scholar 

  2. H. R. Brown and I. M. Ward, Polymer 14 (1973) 469.

    Google Scholar 

  3. G. N. Weidmann and W. Döll, Colloid Polymer Sci. 254 (1976) 205.

    Google Scholar 

  4. S. J. Israel, E. L. Thomas and W. W. Gerberich, J. Mater. Sci. 14 (1979) 2128.

    Google Scholar 

  5. D. S. Dugdale, J. Mech. Sol. 8 (1960) 100.

    Google Scholar 

  6. B. D. Lauterwasser and E. J. Kramer, Phil. Mag. 39A (1979) 469.

    Google Scholar 

  7. T. Chan, A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 676.

    Google Scholar 

  8. N. Verheulpen-Heymans, Polymer 20 (1979) 356.

    Google Scholar 

  9. J. N. Goodier and F. A. Field, Proceedings of the International Conference on Fracture of Solids, edited by D. C. Drucker and J. J. Gilman, Met. Soc. Conferences, Vol. 20 (Interscience, New York, 1963) p. 103.

    Google Scholar 

  10. I. N. Sneddon, “Fourier Transforms”, (McGraw Hill, New York, 1951) p. 395.

    Google Scholar 

  11. N. Verheulpen-Heymans and J. C. Bauwens, J. Mater. Sci. 11 (1976) 117.

    Google Scholar 

  12. B. A. Bilby and J. D. Eshelby, in “Fracture”, Vol. I, edited by H. Liebowitz (Academic Press, London and New York) p. 111.

  13. N. Verheulpen-Heymans, Polymer 21 (1980) 97.

    Google Scholar 

  14. B. N. Dey, J. Appl. Phys. 38 (1967) 4144.

    Google Scholar 

  15. E. J. Kramer, J. Appl. Phys. 41 (1970) 4327.

    Google Scholar 

  16. G. A. Adam, A. Cross and R. N. Haward, J. Mater. Sci. 10 (1975) 1582.

    Google Scholar 

  17. M. G. Wyzgoski and G. S. Y. Yeh, Int. J. Polymer Mater. 3 (1974) 133.

    Google Scholar 

  18. D. R. Uhlmann, Discuss. Faraday Soc. 68 (1979) 68/5.

    Google Scholar 

  19. P. L. Cornes and R. N. Haward, Polymer 15 (1974) 149.

    Google Scholar 

  20. P. L. Cornes, K. Smith and R. N. Haward, J. Polymer Sci. Polymer Phys. Ed. 15 (1977) 955.

    Google Scholar 

  21. N. Walker, J. N. Hay and R. N. Haward, Polymer 20 (1979) 1056.

    Google Scholar 

  22. N. Walker, R. N. Haward and J. N. Hay, J. Mater. Sci. 16 (1981) 817.

    Google Scholar 

  23. Idem, ibid. 14 (179) 1981 1085.

    Google Scholar 

  24. G. I. Taylor, Proc. Roy. Soc. A201 (1950) 192.

    Google Scholar 

  25. A. S. Argon and M. M. Salama, Phil. Mag. 36 (1977) 1217.

    Google Scholar 

  26. A. M. Donald and E. J. Kramer, ibid. 43A (1981) 857.

    Google Scholar 

  27. A. M. Donald, T. Chan and E. J. Kramer, J. Mater. Sci. 16 (1981) 669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donald, A.M., Kramer, E.J. Micromechanics and kinetics of deformation zones at crack tips in polycarbonate. J Mater Sci 16, 2977–2987 (1981). https://doi.org/10.1007/BF00540302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540302

Keywords

Navigation