Skip to main content
Log in

The actual biochemical block in the arg-2 mutant of Chlamydomonas reinhardi

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Arg-2, one of the first arginine-requiring mutants isolated in Chlamydomonas reinhardi, has long been regarded as lacking the enzyme argininosuccinate synthetase. In view of various discrepancies found in the literature, the position of this mutant has been reviewed. The results show that arg-2 has a normal argininosuccinate synthetase activity but lacks argininosuccinate lyase. This finding is in agreement with the results of recombination and complementation analysis, which indicate that arg-2 is included in the arg-7 cistron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald, R. N. (1944). Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J. Biol. Chem. 156121.

    Google Scholar 

  • Ebersold, W. T. (1956). Crossing-over in Chlamydomonas reinhardi. Am. J. Bot. 43408.

    Google Scholar 

  • Ebersold, W. T. (1967). Chlamydomonas reinhardi: Heterozygous diploid strains. Science 157447.

    Google Scholar 

  • Eversole, R. A. (1956). Biochemical mutants of Chlamydomonas reinhardi. Am. J. Bot. 43404.

    Google Scholar 

  • Fincham, J. R. S. (1959). On the nature of the glutamic dehydrogenase produced by interallelic complementation at the am locus of Neurospora crassa. J. Gen. Microbiol. 21600.

    Google Scholar 

  • Fincham, J. R. S. (1966). Genetic Complementation, W. A. Benjamin, New York.

    Google Scholar 

  • Garen, A., and Garen, S. (1963). Complementation in vivo between structural mutants of alkaline phosphatase from E. coli. J. Mol. Biol. 713.

    Google Scholar 

  • Gillham, N. W. (1965). Induction of chromosomal and nonchromosomal mutations in Chlamydomonas reinhardi with N-methyl-N'-nitro-N-nitrosoguanidine. Genetics 52529.

    Google Scholar 

  • Gross, S. R., and Webster, R. E. (1963). Some aspects of interallelic complementation involving leucine biosynthetic enzymes of Neurospora. Cold Spring Harbor Symp. Quant. Biol. 28543.

    Google Scholar 

  • Hirs, C. H. W., Moore, S., and Stein, W. M. (1954). The chromatography of amino acids on ion exchange resins. Use of volatile acids for elution. J. Am. Chem. Soc. 766063.

    Google Scholar 

  • Hudock, G. A. (1962). The pathway of arginine biosynthesis in Chlamydomonas reinhardi. Biochem. Biophys. Res. Commun. 9551.

    Google Scholar 

  • Hudock, G. A. (1963). Repression of argininosuccinase in Chlamydomonas reinhardi. Biochem. Biophys. Res. Commun. 10133.

    Google Scholar 

  • Levine, R. P., and Ebersold, W. T. (1958). Gene recombination in Chlamydomonas reinhardi. Cold Spring Harbor Symp. Quant. Biol. 23101.

    Google Scholar 

  • Levine, R. P., and Goodenough, U. W. (1970). The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardi. Ann. Rev. Genet. 4397.

    Google Scholar 

  • Loppes, R. (1969). A new class of arginine-requiring mutants in Chlamydomonas reinhardi. Molec. Gen. Genet. 104172.

    Google Scholar 

  • Loppes, R. (1970). Selection of arginine-requiring mutants after treatment with three mutagens. Experientid (Basel) 26660.

    Google Scholar 

  • Loppes, R., and Strijkert, P. J. (1972). Arginine metabolism in Chlamydomonas reinhardi. Conditional expression of arginine-requiring mutants. Molec. Gen. Genet. 116298.

    Google Scholar 

  • Loppes, R., Matagne, R., and Strijkert, P. J. (1972). Complementation at the Arg-7 Locus in Chlamydomonas reinhardi. Heredity 28239.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • Ratner, S. (1955). Enzymatic synthesis of arginine (condensing and splitting enzymes). In Methods in Enzymology, Vol. II, Academic Press, New York, p. 356.

    Google Scholar 

  • Ratner, S., and Kunkemueller, M. (1966). Separation and properties of argininosuccinate and its two anhydrides, and their detection in biological materials. Biochemistry 51821.

    Google Scholar 

  • Reger, B. J., Fairfield, S. A., Epler, J. L., and Barnett, W. E. (1970). Identification and origin of some chloroplast aminoacyl-tRNA synthetases and tRNAs. Proc. Natl. Acad. Sci. 671207.

    Google Scholar 

  • Strijkert, P. J., and Sussenbach, J. S. (1969). Arginine metabolism in Chlamydomonas reinhardi. Evidence for a specific regulatory mechanism of the biosynthesis. Europ. J. Biochem. 8408.

    Google Scholar 

  • Sussenbach, J. S., and Strijkert, P. J. (1969a). Arginine metabolism in Chlamydomonas reinhardi. On the regulation of the arginine biosynthesis. Europ. J. Biochem. 8408.

    Google Scholar 

  • Sussenbach, J. S., and Strijkert, P. J. (1969a). Arginine metabolism in Chlamydomonas reinhardi. On the regulation of the arginine biosynthesis. Europ. J. Biochem. 8403.

    Google Scholar 

  • Sussenbach, J. S., and Strijkert, P. J. (1969b). Arginine metabolism in Chlamydomonas reinhardi. Arginine deiminase: The first enzyme of the catabolic pathway. FEBS Letters 3166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Chercheur qualifié du Fonds National Belge de la Recherche Scientifique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strijkert, P.J., Loppes, R. & Sussenbach, J.S. The actual biochemical block in the arg-2 mutant of Chlamydomonas reinhardi . Biochem Genet 8, 239–248 (1973). https://doi.org/10.1007/BF00486176

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486176

Keywords

Navigation