Skip to main content
Log in

An experimental study on the rate of reaction between mercury vapour and gaseous nitrogen dioxide

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The importance of nitrogen dioxide for oxidation of gaseous mercury in the atmosphere and in combustion flue gases was investigated. The reaction rate was studied by a stopped flow technique in a temperature interval from 20 °C to 900 °C and at surface-to-volume ratios of 1.8 and 4 cm−1. The reaction exhibits a first-order dependence with respect to mercury and a second-order dependence with respect to NO2 in the temperature range from 20 °C to 200 °C. From 250 °C to 500 °C, the NO2 dependence is lost and a partly heterogeneous reaction is proposed. Above 500 °C, no reaction was detectable. The Hg-NO2 reaction appears to have little significance for the atmospheric chemistry of mercury nor for the transformation of mercury in combustion processes, It might, however, have some importance on the oxidation of elemental mercury in aging combustion plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lindqvist, O.; Johansson, K.; Aastrup, M.; Andersson, A; Bringmark, L.; Hovsenius, G.; Håkanson, L; Iverfeldt, Å.; Meili, M.; Timm, B.: 1991, “Mercury in the Swedish Environment — Resent Research on Causes, Consequences and Corrective Methods”, Water, Air, and Soil Pollut. 55, (1–2).

    Google Scholar 

  2. Lindqvist, O.; Rodhe, H.: 1985, Tellus 37B, 136.

    Google Scholar 

  3. Slemr, F.; Schuster, G.; Seiler, W.: 1985, J. Atmos. Chem. 3, 407.

    Google Scholar 

  4. Yarwood, G. and Niki, H., 1990, “A Critical Review of Available Information on Transformation Pathways for Mercury Species in the Atmospheric Environment”, Prepared for Atmospheric Environmental Service. Environment Canada, 4905 Dufferin Street, Downsview, Ontario M3H 5T4.

  5. Pyankov, V. A.: 1949, J. Gen. Chem. USSR 19, 187.

    Google Scholar 

  6. Iverfeldt, Å.; Lindqvist, O.: 1986, Atmos. Environ. 20, 1567.

    Google Scholar 

  7. Munthe, J.: 1992, Atmos. Environ. 26A, 1461.

    Google Scholar 

  8. Braun, H.; Metzger, M.; Vogg, H.: 1986, Müll und Abfall 2, 62.

    Google Scholar 

  9. Stevens, R. D. S.; Reid, N. W.; Schroeder, W. H.; McLean, R. A. N.: 1982, “The chemical forms and lifetimes of mercury in the atmosphere”, Second Symposium on Combustion and the Nonurban Troposphere, Williamsburg, VA, 25–28 May.

  10. Munthe, J.: 1991, “The Redox Cycling of Mercury in the Atmosphere”, Dissertation at the Department of Inorganic Chemistry, University of Götenborg and Chalmers University of Technology, Göteborg, Sweden, ISBN 91-7032.606-1.

    Google Scholar 

  11. Zacharewski, T. R.; Cherniak, E. A.; Schroeder, W. H.: 1987, Atmos. Environ. 27, 2327.

    Google Scholar 

  12. Cooper, D.: 1990, “Some Aspects of NOx Control in Fluidized Bed Combustion”, Dissertation at the Department of Inorganic Chemistry, University of Göteborg and Chalmers University of Technology, Göteborg, Sweden, ISBN 91-7032-403-4.

    Google Scholar 

  13. Finlaysson-Pitts, B. J.; Pitts, J. N. jr.: 1986, “Atmospheric chemistry: Fundamentals and experimental techniques”, John Wiley & Sons. New York, page 37.

    Google Scholar 

  14. Hall, B.; Schager, P.; Lindqvist, O.: 1991, Water, Air, and Soil Pollution 56, 3.

    Google Scholar 

  15. Pierce, W. C.; Noyes, W. A.: 1928, J. Amer. Chem. Soc. 50, 2179.

    Google Scholar 

  16. Freeman, E. S.; Gordon, S.: 1956, J. Amer. Chem. Soc. 78, 1813.

    Google Scholar 

  17. Johnston, H. S.: 1954, Discussions Faraday Soc. 17, 14.

    Google Scholar 

  18. Biggs, P.; Canosa-Mas, C. E.; Joseph, M.; Monks, P. S.; Wayne, R. P.: 1990, ‘The Self-Reaction of the NO3 Radical. Physico-Chemical Behaviour of Atmospheric Pollutants”, Air Pollution Research reports no 2. 408–413. Edited by G. Restelli and G. Angeletti. Kluwer Academic Publisher.

  19. Wodarczyk, F. J.; Harker, A. B.: 1979, Chem. Phys. Lett. 62(3), 529.

    Google Scholar 

  20. Zhang, F. M.; Oba, D.; Setser, D. W.: 1987, J. Phys. Chem. 91, 1099.

    Google Scholar 

  21. Gozel, P.; Calpini, B.; Van den Berg, H.: 1984, Israel Journal of Chemistry 24, 210.

    Google Scholar 

  22. JANAF Thermochemical tables: 1985, J. Phys, Chem. Ref. Data. 14(1).

  23. Taylor, G. B.; Hulett, G. H. L: 1913, J. Phys. Chem. 17, 565.

    Google Scholar 

  24. Greenwood, N. N.; Earnshaw, A.: 1984, “Chemistry of the elements”, Pergamon Press Ltd., p. 524.

  25. Odenbrand, I. C. U.; Andersson, L. A. H.; Brandin, J. G. M.; Lundin, S. T: 1986, Applied Catalysis 27, 363.

    Google Scholar 

  26. Rosser, W. A.; Wise, H.: 1956, J. Chem. Phys. 24, 493.

    Google Scholar 

  27. Ashmore, P. G.; Burnett, M. G.: 1962, Trans. Faraday Soc. 58, 252.

    Google Scholar 

  28. Wikstrom, L. L.; Nobe, K.: 1965, Ind. Eng. Chem., Proc. Des. Dev. 4, 191.

    Google Scholar 

  29. Personal communication with Dr. Dan Stömberg, Department of Inorganic Chemistry, University of Göteborg and Chalmers University of Technology.

  30. Jeannotte, A.; Appelman, E. H.; Schreiner, F.; Abraham, B. M.: 1978, J. Phys. Chem. 82, 2253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B., Schager, P. & Ljungström, E. An experimental study on the rate of reaction between mercury vapour and gaseous nitrogen dioxide. Water Air Soil Pollut 81, 121–134 (1995). https://doi.org/10.1007/BF00477260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00477260

Keywords

Navigation