Skip to main content
Log in

Effects of two mitosis inhibitors (Colchicine and Vinblastine) on the distribution and axonal transport of noradrenaline storage particles, studied by fluorescence and electron microscopy

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The lumbar sympathetic ganglia and the interganglionic interconnecting nerves of untreated rats and rats treated with Colchicine (COL) or Vinblastine (VIN) were studied with the help of the Falck-Hillarp fluorescence technique and electron microscopy. Both in untreated and drug treated rats there was a good correlation between the distribution of noradrenaline (NA) specific fluorescence and granular vesicles supporting the previous view that the granular vesicles represent the main intraneuronal NA storage sites. The granular vesicles were present both in the cell bodies—mainly in the peripheral part of the cytoplasm— and in the axons of untreated rats. After local application of COL or VIN on the ganglia there was a marked increase in fluorescence intensity and number of granular vesicles in many cell bodies. Often increased number of granular vesicles were found in the neighbourhood of the Golgi apparatus, in which region only few such vesicles are found in untreated rats. In some cell bodies high numbers of granular vesicles could be found all over the cytoplasm.

When applied locally to axons the mitosis inhibitors caused a marked accumulation of fluorescence and granular vesicles—and other cell organelles like mitochondria and tubules of the endoplasmic reticulum-proximal to the site of application.

A prominent feature both in cell bodies and axons of drug treated rats were large bundles of neurofilaments running through the cytoplasm. In the axons these filaments were often localized to the central part of the axon and surrounded by vesicles and tubules. Microtubules, on the other hand, which are rather numerous in cell bodies and axons of untreated rats seemed to be reduced in number after COL or VIN treatment, especially in those axons in which large amounts of subcellular organelles had accumulated.

The present findings are discussed with respect to intraneuronal transport of NA and possible mechanisms behind this transport. It is suggested that the accumulation of fluorescence and granular vesicles after application of mitosis inhibitors is due to an interruption of the centrifugal transport of NA granules. The increased numbers of granular vesicles in the neighbourhood of the Golgi apparatus suggest that granular vesicles are produced in this part of the cytoplasm. This does not exclude a local formation of granular vesicles in other parts of the neuron. Furthermore, the possibility is discussed that the interruption of the transport is related to the increased number of neurofilaments and a possible decrease or disarrangement of microtubules. This discussion is based on previous suggestions that microtubules are involved in intracellular transport mechanisms and on recent findings that COL and VIN bind to proteins specific for microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andén, N.-E., Carlsson, A., Häggendal, J.: Adrenergic mechanisms. Ann. Rev. Pharmacol. 9, 119–134 (1969).

    Google Scholar 

  • Banks, P., Mangnall, D., Mayor, D.: The redistribution of cytochrome-oxidase, noradrenaline and adenosine triphosphate in adrenergic nerves constricted at two points. J. Physiol. (Lond.) 200, 745–762 (1969).

    Google Scholar 

  • Björklund, A., Cegrell, L., Falck, B., Ritzén, M., Rosengren, E.: Dopamine-containing cells in sympathetic ganglia. Acta physiol. scand. 78, 334–338 (1970).

    Google Scholar 

  • Bodian, D., Taylor, N.: Synapse arising at central node of Ranvier, and note on fixation of the central nervous system. Pharmacol. Rev. 11, 490–493 (1963).

    Google Scholar 

  • Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).

    Google Scholar 

  • Cravioto, H.: Elektronenmikroskopische Untersuchungen am sympathischen Nervensystem des Menschen. I. Nervenzellen. Z. Zellforsch. 58, 321–330 (1962).

    Google Scholar 

  • Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677–689 (1965).

    Google Scholar 

  • - The intraneuronal distribution of noradrenaline and the transport and life-span of amine storage granules in the sympathetic adrenergic neuron: M. D. Thesis, Stockholm (1966).

  • —: Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Europ. J. Pharmacol. 5, 111–112 (1968).

    Google Scholar 

  • —: The effects of drugs on axonal transport of amine storage granules. In: New aspects of storage and release mechanisms of catecholamines (H. J. Schümann and G. Kroneberg, eds.) Bayer Symposium II, p. 20–36. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  • —, Fuxe, K.: Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta physiol. scand. 62, Suppl. 232, 1 (1964a).

    Google Scholar 

  • — —: A method for the demonstration of adrenergic nerve fibres in peripheral nerves. Z. Zellforsch. 2, 602–607 (1964b).

    Google Scholar 

  • —, Häggendal, J.: Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta physiol. scand. 7, 271–277 (1966a).

    Google Scholar 

  • — —: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand. 67, 278–288 (1966b).

    Google Scholar 

  • — —: Axonal transport of amine storage granules in sympathetic adrenergic neurons. In: Biochemistry of simple neuronal models, (eds. E. Costa and E. Giacobini), Advances in biochemical psychopharmacology, vol. 2, p. 65–93. New York: Raven Press 1970.

    Google Scholar 

  • — —, Hökfelt, T.: The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta physiol. scand. 67, 289–294 (1966).

    Google Scholar 

  • Elfvin, L.-G.: The ultrastructure of unmyelinated fibres in the splenic nerve of the cat. J. Ultrastruct. Res. 1, 428–454 (1958).

    Google Scholar 

  • —: Electron-microscopic investigation of filamentous structures in unmyelinated fibres of cat splenic nerve. J. Ultrastruct. Res. 5, 51–64 (1961).

    Google Scholar 

  • —: The ultrastructure of the superior sympathetic ganglion of the cat. I. The structure of the ganglion cell processes as studied by serial sections. J. Ultrastruct. Res. 8, 403–440 (1963a).

    Google Scholar 

  • —: The ultrastructure of the superior sympathetic ganglion of the cat. II. The structure of the preganglionic and fibres and the synapses as studied by serial sections. J. Ultrastruct. Res. 8, 441–476 (1963b).

    Google Scholar 

  • —: A new granule-containing nerve cell in the inferior mesenteric ganglion of the rabbit. J. Ultrastruct. Res. 22, 37–44 (1968).

    Google Scholar 

  • Eränkö, O., Härkönen, M.: Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat. Acta physiol. scand. 58, 285–286 (1963).

    Google Scholar 

  • Falck, B., Owman, C.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Universitatis Lundensis, Sect. II, 1, 1–23 (1965).

    Google Scholar 

  • Forssman, W. G.: Studien über den Feinbau des Ganglion cervicale superius der Ratte. I. Normale Struktur. Acta anat. (Basel) 59, 106–140 (1964).

    Google Scholar 

  • Fritzell, M., Hasselgren, P. O., Sjöstrand, J.: Axoplasmic transport of acetylcholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit. Exp. Brain Res. 10, 526–531 (1970).

    Google Scholar 

  • Fuxe, K., Goldstein, M., Hökfelt, T., Joh, T. H.: Immunohistochemical localization of dopamine-β-hydroxylase in the peripheral and central nervous system. Res. Comm. Chem. Pathol. Pharmacol. 1, 627–636 (1970a).

    Google Scholar 

  • - - - - Cellular localization of dopamine-β-hydroxylase and phenylethanolamine-N-methyl transferase as revealed by immunohistochemistry. Progr. Brain Res., (in press) (1971).

  • —, Hökfelt, T., Jonsson, G., Ungerstedt, U.: Fluorescence microscopy in neuroanatomy. In: Contemporary research methods in neuroanatomy (W. J. H. Nauta and S. O. E. Ebbesson, eds.), p. 275–314. New York-Heidelberg-Göttingen: Springer 1970b.

    Google Scholar 

  • — —, Ungerstedt, U.: Localization of indole-alkylamine in CNS. Advanc. in Pharmacol. 6 (A), 235–251 (1968).

    Google Scholar 

  • — — —: Morphological and functional aspects on central monoamine neurons. In: Int. rev. neurobiol. (C. C. Pfeiffer and J. K. Smythies, eds.), vol. 13, p. 93–126. New York-London: Academic Press 1970c.

    Google Scholar 

  • Geffen, L. B., Ostberg, A.: Distribution of granular vesicles in normal and constricted sympathetic neurons. J. Physiol. (Lond.) 204, 583–592 (1969).

    Google Scholar 

  • —, Rush, R. A.: Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J. Neurochem. 15, 925–930 (1968).

    Google Scholar 

  • Grillo, M.: Electron microscopy of sympathetic tissue. Pharmacol. Rev. 18, 387–399 (1966).

    Google Scholar 

  • —, Palay, S. L.: Granule-containing vesicles in the autonomic nervous system. In: Electron microscopy (ed., S. S. Breese, Jr.), Vol. 2, p. U-1. Academic Press: New York 1962.

    Google Scholar 

  • Hökfelt, T.: On the ultrastructural localization of noradrenaline in the central nervous system of the rat. Z. Zellforsch. 79, 110–117 (1967).

    Google Scholar 

  • —: In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch. 91, 1–74 (1968).

    Google Scholar 

  • —: Distribution of noradrenaline storage particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta physiol. scand. 76, 427–440 (1969).

    Google Scholar 

  • Iversen, L. L.: The uptake and storage of noradrenaline in sympathetic adrenergic nerves. London: Cambridge University Press 1967.

    Google Scholar 

  • Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A methodological study. M. D. Thesis, Stockholm (1967).

  • Kapeller, K., Mayor, D.: Ultrastructural changes proximal to a constriction in sympathetic axons during first 24 hours after operation. J. Anat. (Lond.) 100, 439–441 (1966).

    Google Scholar 

  • — —: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B 167, 282–292 (1967).

    Google Scholar 

  • — —: An electron microscopic study of the early changes proximal to a constriction in sympathetic nerves. Proc. roy. Soc. B 172, 39–51 (1969).

    Google Scholar 

  • Karlsson, J.-O., Sjöstrand, J.: The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Res. 13, 617–619 (1969).

    Google Scholar 

  • Klatzo, I., Wisniewski, H., Streicher, E.: Experimental production of neurofibrillary degeneration. I. Light microscopic observations. J. Neuropath. exp. Neurol. 24, 187–199 (1965).

    Google Scholar 

  • Kreutzberg, G.: Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. nat. Acad. Sci. (Wash.) 62, 722–728 (1969).

    Google Scholar 

  • Laduron, P., Belpaire, F.: Transport of noradrenaline and dopamine-β-hydroxylase in sympathetic nerves. Life Sci. 7, 1–7 (1968).

    Google Scholar 

  • Livett, B. G., Geffen, L. B., Austin, L.: Proximo-distal transport of 14C-noradrenaline and protein in sympathetic nerves. J. Neurochem. 15, 931–939 (1968).

    Google Scholar 

  • Luft, J. H.: Permanganate—a new fixative for electron microscopy. J. biophys. biochem. Cytol. 2, 799–802 (1956).

    Google Scholar 

  • —: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Malawista, S. E., Bensch, K. G., Sato, H.: Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle. Science 160, 770–772 (1968).

    Google Scholar 

  • Martinez, A. J., Friede, R. L.: Accumulation of axoplasmic organelles in swollen nerve fibers. Brain Res. 19, 183–198 (1970).

    Google Scholar 

  • Norberg, K.-A., Hamberger, B.: The sympathetic adrenergic neuron. Some characteristics revealed by histochemical studies on the intraneuronal distribution of the transmitter. Acta physiol. scand. 63, Suppl. 238, 1–42 (1964).

    Google Scholar 

  • —, Ritzén, M., Ungerstedt, U.: Histochemical studies on a special catacholamine-containing cell type in sympathetic ganglia. Acta physiol. scand. 67, 260–270 (1966).

    Google Scholar 

  • Ochs, S., Johnson, J.: Fast and slow phases of axoplasmic flow in ventral root nerve fibres. J. Neurochem. 16, 845–853 (1969).

    Google Scholar 

  • Olson, L., Hamberger, B., Jonsson, G., Malmfors, T.: Combined fluorescence histochemistry and 3H-noradrenaline measurements of adrenergic nerves. Histochemie 15, 38–45 (1968).

    Google Scholar 

  • Orden, L. S. III, van, Burke, J. P., Geyer, M., Lodoen, F. V.: Localization of depletion-sensitive and depletion-resistant norepinephrine storage sites in autonomic ganglia. J. Pharmacol. exp. Ther. 174, 56–71 (1970).

    Google Scholar 

  • Pick, J., de Lemos, C., Cianella, A.: Fine structure of nerve terminals in the human gut. Anat. Rec. 159, 131–146 (1967).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Richardson, K. C.: Electron microscopic identification of autonomic nerve endings. Nature (Lond.) 210, 756 (1966).

    Google Scholar 

  • Sabatini, D. D., Bensch, K., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Schmitt, F. O.: The molecular biology of neural fibrous proteins. Neurosci. Res. Progr. Bull. 6, 119–144 (1968).

    Google Scholar 

  • - Samson, F. E.: Neuronal fibrous proteins. Neurosci. Res. Progr. Bull. 6 (1968).

  • Seil, F. J., Lampert, P. W.: Neurofibrillary tangles induced by vincristine and vinblastine sulfate in central and peripheral neurons. Exp. Neurol. 21, 219–230 (1968).

    Google Scholar 

  • Shelansky, M. L., Taylor, E. W.: Isolation of a protein subunit from microtubules. J. Cell Biol. 34, 549–554 (1967).

    Google Scholar 

  • — —: Properties of the microtubular protein. J. Cell Biol. 38, 304–315 (1968).

    Google Scholar 

  • —, Wisniewski, H.: Neurofibrillary degeneration induced by vincristine therapy. Arch. Neurol. (Chic.) 20, 199–206 (1969).

    Google Scholar 

  • Siegrist, G., Ribaupierre, F. de, Dolivo, M., Rouiller, Ch.: Les cellules chromaffines des ganglion cervicaux supérieurs du rat. J. Microscopie 5, 791–794 (1966).

    Google Scholar 

  • Taxi, J.: Étude de l'ultrastructure des zones synaptiques dans les ganglions sympathétiques de la Grenouille. C. R. Acad. Sci. (Paris) 252, 174–176 (1961).

    Google Scholar 

  • —: Contribution a l'étude des connexions des neurons moteurs du système nerveux autonome. Ann. Sci. Nat. 7, 413–674 (1965).

    Google Scholar 

  • Taylor, E. W.: Contractile proteins and cytoplasmic movement. Neurosci. Res. Progr. Bull. 5, 333–337 (1967).

    Google Scholar 

  • Terry, R. D., Pena, C.: Experimental production of neurofibrillary degeneration. II. Electron microscopy, phosphatase histochemistry and electron probe analysis. J. Neuropath. exp. Neurol. 24, 200–210 (1965).

    Google Scholar 

  • Weisenberg, R. W.: Studies on the chemistry of microtubule protein. Ph. D. Thesis. University of Chicago (1968).

  • —, Borisy, G. G., Taylor, E. W.: The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry (Wash.) 7, 4466–4479 (1968).

    Google Scholar 

  • Weiss, P. W.: Neuronal dynamics and neuroplasmic (“axonal”) flow. In: Cellular dynamics of the neuron, ed. S. Barondes, vol. 8, p. 3–34, New York-London: Academic Press 1969.

    Google Scholar 

  • —, Hiscoe, H.: Experimentals on the mechanism of nerve growth. J. exp. Zool. 107, 315–396 (1948).

    Google Scholar 

  • Wilson, L., Bryan, J., Ruby, A., Mazia, D.: Precipitation of proteins by vinblastine and calcium ions. Proc. nat. Acad. Sci. (Wash.) 66, 807–814 (1970).

    Google Scholar 

  • Wisniewski, H., Shelanski, M. L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cell. J. Cell Biol. 38, 224–230 (1968).

    Google Scholar 

  • —, Terry, R. D.: Experimental colchicine encephalopathy. I. Induction of neurofibrillary degeneration. Lab. Invest. 17, 577–587 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study has been supported by grants from the Swedish Medical Research Council (B70-14X-2887-01; B71-14X-2887-02A; B71-14P-3262-01 A; B70-14X-2207-04; B71-14X-2207-05A; K70-40P-3045-01A), from Magnus Bergwalls Foundation, from Wilhelm and Martina Lundgrens Foundation, from the Medical Faculty, University of Göteborg.

For generous supply of vinblastine (Velbe®) we thank Eli Lilly Ltd.

The skilful technical assistance of Mrs Kirsten Collin, Mrs Waldraut Hiort and Mr Pär-Anders Larsson is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hökfelt, T., Dahlström, A. Effects of two mitosis inhibitors (Colchicine and Vinblastine) on the distribution and axonal transport of noradrenaline storage particles, studied by fluorescence and electron microscopy. Z.Zellforsch 119, 460–482 (1971). https://doi.org/10.1007/BF00455243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00455243

Key-Words

Navigation