Skip to main content
Log in

Formation and stability of linear plasmids in a recombination deficient strain of yeast

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Natural termini from macronuclear DNA of the ciliated protozoans Tetrahymena thermophila and Oxytricha fallax can support telomere formation in yeast. However, plasmids carrying these ciliate termini are modified by the addition of DNA which hybridizes to the synthetic oligonucleotide poly [d(C-A)], a sequence which also hybridizes to terminal restriction fragments from yeast chromosomes but not to Tetrahymena or Oxytricha macronuclear DNAs. Thus, in yeast, the creation of new telomeres on ciliate termini involves the acquisition of yeast-specific terminal sequences presumably by either recombination or non-templated DNA synthesis. The RAD52 gene is required for the majority of yeast mitotic and meiotic recombination events. Moreover, the absence of an active RAD52 gene product results in high rates of chromosome loss. Here we demonstrate that terminal restriction fragments from Tetrahymena macronuclear ribosomal DNA (rDNA) support the formation of modified telomeres in a yeast strain carrying a defect in the RAD52 gene. Moreover, linear plasmids bearing these modified ciliate termini are stably propagated in rad52 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergold PJ, Campbell GR, Littau VC, Johnson EM (1983) Cell 32:1287–1299

    Google Scholar 

  • Blackburn EH, Gall JG (1978) J Mol Biol 120:33–53

    Google Scholar 

  • Boswell RE, Klobutcher LA, Prescott DM (1982) Proc Natl Acad Sci USA 79:3255–3259

    Google Scholar 

  • Dani GM, Zakian VA (1983) Proc Natl Acad Sci USA 80:3406–3410

    Google Scholar 

  • Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padget RA (1980) Methods Enzymol 65:404–411

    Google Scholar 

  • Dunn B, Szauter P, Pardue ML, Szostak JW (1984) Cell 39:191–201

    Google Scholar 

  • Game JC, Zamb TJ, Braun RJ, Resnick M, Roth RM (1980) Genetics 94:51–68

    Google Scholar 

  • Heumann JM (1976) Nucleic Acids Res 3:3167–3171

    Google Scholar 

  • Ho KSY (1975) Mutat Res 30:327–334

    Google Scholar 

  • Holmquist GP, Dancis B (1979) Proc Natl Acad Sci USA 76:4566–4570

    Google Scholar 

  • Jackson JA, Fink GR (1981) Nature 292:306–311

    Google Scholar 

  • King BO, Yao MC (1982) Cell 31:177–182

    Google Scholar 

  • Kiss GB, Amin AA, Pearlman RE (1981) Mol Cell Biol 1:535–543

    Google Scholar 

  • Klobutcher LA, Swanton MT, Donini P, Prescott DM (1981) Proc Natl Acad Sci USA 78:3015–3019

    Google Scholar 

  • Lawn RM, Heumann JM, Herrick G, Prescott DM (1978) Cold Spring Harbor Symp Quant Biol 42:483–492

    Google Scholar 

  • Malone RE, Esposito RE (1980) Proc Natl Acad Sci USA 77:503–507

    Google Scholar 

  • Mortimer RK, Contopoulou R, Schild D (1981) Proc Natl Acad Sci USA 78:5778–5782

    Google Scholar 

  • Oka Y, Honjo T (1983) Nucleic Acids Res 11:4325–4333

    Google Scholar 

  • Oka Y, Shiota S, Nakai S, Nishida Y, Okubo S (1980) Gene 10:301–306

    Google Scholar 

  • Pluta AF, Dani GM, Spear BB, Zakian VA (1984) Proc Natl Acad Sci USA 81:1475–1479

    Google Scholar 

  • Pluta AF, Kaine BP, Spear BB (1982) Nucleic Acids Res 10:8145–8154

    Google Scholar 

  • Prakash S, Prakash L, Burke W, Montelone BA (1980) Genetics 94:31–50

    Google Scholar 

  • Preer JR Jr, Preer LB (1979) J Protozool 26:14–18

    Google Scholar 

  • Resnick MA, Martin P (1976) Mol Gen Genet 143:119–129

    Google Scholar 

  • Shampay J, Szostak JW, Blackburn EH (1984) Nature 310:154–157

    Google Scholar 

  • Stinchcomb DT, Mann C, Davis RW (1982) J Mol Biol 158:157–179

    Google Scholar 

  • Szostak JW, Blackburn EH (1982) Cell 29:245–255

    Google Scholar 

  • Walmsley RM, Szostak JW, Petes TD (1983) Nature 302:84–86

    Google Scholar 

  • Walmsley RW, Chan CSM, Tye B-K, Petes TD (1984) Nature 310:157–160

    Google Scholar 

  • Weiffenbach B, Haber JE (1981) Mol Cell Biol 1:522–534

    Google Scholar 

  • Wild MA, Gall JG (1979) Cell 16:565–573

    Google Scholar 

  • Zakian VA, Scott JF (1982) Mol Cell Biol 2:221–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakian, V.A., Blanton, H.M. & Dani, G.M. Formation and stability of linear plasmids in a recombination deficient strain of yeast. Curr Genet 9, 441–445 (1985). https://doi.org/10.1007/BF00434048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434048

Key words

Navigation